Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Với mỗi số \(k\), đặt \({I_k} = \int\limits_{ - \sqrt k }^{\sqrt k } {\sqrt {k - {x^2}} dx} \). Khi đó

Câu hỏi số 415168:
Vận dụng

Với mỗi số \(k\), đặt \({I_k} = \int\limits_{ - \sqrt k }^{\sqrt k } {\sqrt {k - {x^2}} dx} \). Khi đó \({I_1} + {I_2} + {I_3} + ... + {I_{12}}\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:415168
Phương pháp giải

- Đặt ẩn phụ \(x = \sqrt k \sin t\).

- Sử dụng công thức hạ bậc \({\cos ^2}t = \dfrac{{1 + \cos 2t}}{2}\).

- Tính tích phân.

- Sử dụng công thức tính tổng \(1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\).

Giải chi tiết

Đặt \(x = \sqrt k \sin t\) \( \Rightarrow dx = \sqrt k \cos tdt\).

Đổi cận: \(\left\{ \begin{array}{l}x =  - \sqrt k  \Leftrightarrow \sin t =  - 1 \Leftrightarrow t =  - \dfrac{\pi }{2}\\x = \sqrt k  \Leftrightarrow \sin t = 1 \Leftrightarrow t = \dfrac{\pi }{2}\end{array} \right.\).

Khi đó ta có

\(\begin{array}{l}{I_k} = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sqrt {k - k{{\sin }^2}t} .\sqrt k \cos tdt} \\{I_k} = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {k{{\cos }^2}tdt} \\{I_k} = k\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{1 + \cos 2t}}{2}dt} \\{I_k} = \dfrac{k}{2}\left. {\left( {t + \dfrac{1}{2}\sin 2t} \right)} \right|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}}\\{I_k} = \dfrac{k}{2}\left( {\dfrac{\pi }{2} + \dfrac{1}{2}\sin \pi  + \dfrac{\pi }{2} - \dfrac{1}{2}\sin \left( { - \pi } \right)} \right)\\{I_k} = \dfrac{k}{2}.\pi  = \dfrac{{k\pi }}{2}\end{array}\)

\(\begin{array}{l} \Rightarrow {I_1} + {I_2} + {I_3} + ... + {I_{12}}\\ = \dfrac{\pi }{2}\left( {1 + 2 + 3 + ... + 12} \right)\\ = \dfrac{\pi }{2}.\dfrac{{12.13}}{2} = 39\pi \end{array}\) 

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com