Cho hình chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên bằng \(a\sqrt 2 \).
Cho hình chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên bằng \(a\sqrt 2 \). Xét điểm \(M\) thay đổi trên mặt phẳng \(SCD\) sao cho tổng \(Q = M{A^2} + M{B^2} + M{C^2} + M{D^2} + M{S^2}\) nhỏ nhất. Gọi \({V_1}\) là thể tích của khối chóp \(S.ABCD\) và \({V_2}\) là thể tích của khối chóp \(M.ACD\). Tỉ số \(\dfrac{{{V_2}}}{{{V_1}}}\) bằng
Đáp án đúng là: C
Quảng cáo
- Gọi \(I\) là điểm thỏa mãn \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} + \overrightarrow {ID} + \overrightarrow {IS} = \overrightarrow 0 \), xác định vị trí điểm \(I\) và chứng minh \({Q_{\min }} \Leftrightarrow M{I_{\min }}\), khi đó \(M\) là hình chiếu của \(I\) lên \(\left( {SCD} \right)\) hay \(MI \bot \left( {SCD} \right)\).
- Xác định tỉ số \(\dfrac{{d\left( {M;\left( {ABCD} \right)} \right)}}{{d\left( {S;\left( {ABCD} \right)} \right)}} = \dfrac{{ME}}{{SE}}\), sư dụng định lí Ta-lét và hệ thức lượng trong tam giác vuông để tính tỉ số.
- Tính tỉ số thể tích bằng tỉ số chiều cao nhân tỉ số diện tích đáy.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













