Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt cầu \(\left( S \right)\) có phương trình \({\left(

Câu hỏi số 415794:
Vận dụng

Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 25.\) Mặt phẳng \(\left( P \right)\) tiếp xúc với mặt cầu \(\left( S \right)\) tại điểm \(H\left( {4;\,\,2;\,\,3} \right)\) có phương trình là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:415794
Phương pháp giải

Phương trình mặt phẳng \(\left( P \right)\) cần tìm đi qua \(H\) và tiếp xúc với mặt cầu \(\left( S \right)\) tâm \(I\) có bán kính đáy \(R\) nhận \(\overrightarrow {IH} \) làm VTPT.

Phương trình mặt phẳng đi qua điểm \(M\left( {{x_0};\;{y_0};\;{z_0}} \right)\) và có VTPT \(\overrightarrow n  = \left( {A;\;B;\;C} \right)\) có phương trình: \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0.\)

Giải chi tiết

Mặt cầu \(\left( S \right):\,\,\,{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\) có tâm \(I\left( {1; - 2;\,\,3} \right)\) và bán kính \(R = 5.\)

Ta có: \(\overrightarrow {IH}  = \left( {3;\,\,4;\,\,0} \right).\)

Phương trình mặt phẳng \(\left( P \right)\) cần tìm đi qua \(H\left( {4;\,\,2;\,\,3} \right)\) và tiếp xúc với mặt cầu \(\left( S \right)\) nhận \(\overrightarrow {IH} \) làm VTPT.

\( \Rightarrow \left( P \right):\,\,\,3\left( {x - 4} \right) + 4\left( {y - 2} \right) = 0\) \( \Leftrightarrow 3x + 4y - 20 = 0.\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com