Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một ô tô đang đứng và bắt đầu chuyển động theo một đường thẳng với gia tốc \(a\left( t

Câu hỏi số 415812:
Vận dụng

Một ô tô đang đứng và bắt đầu chuyển động theo một đường thẳng với gia tốc \(a\left( t \right) = 6 - 3t\,\,\left( {m/{s^2}} \right)\), trong đó \(t\) là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:415812
Phương pháp giải

- Tìm hàm vận tốc: \(v\left( t \right) = \int {a\left( t \right)dt} \).

- Sử dụng giả thiết \(v\left( 0 \right) = 0\) xác định hằng số \(C\).

- Tìm thời điểm \({t_0}\) mà vận tốc đạt giá trị lớn nhất.

- Tính quãng đường từ lúc bắt đầu chuyển động đến thời điểm \({t_0}\): \(S = \int\limits_0^{{t_0}} {v\left( t \right)dt} \).

Giải chi tiết

Ta có \(v\left( t \right) = \int {a\left( t \right)dt}  = \int {\left( {6 - 3t} \right)dt}  = 6t - \dfrac{{3{t^2}}}{2} + C\).

Theo bài ra ta có: Ô tô đang đứng yên và bắt đầu chuyển động, do đó \(v\left( 0 \right) = 0\) \( \Rightarrow C = 0\).

Khi đó ta có \(v\left( t \right) = 6t - \dfrac{3}{2}{t^2}\), đây là một parabol có bề lõm hướng xuống, đạt giá trị lớn nhất tại \(t = \dfrac{{ - b}}{{2a}} = \dfrac{{ - 6}}{{2.\left( { - \dfrac{3}{2}} \right)}} = 2\).

Vậy quãng đường ô tô đi được từ khi chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là:

\(S = \int\limits_0^2 {v\left( t \right)dt}  = \int\limits_0^2 {\left( {6t - \dfrac{3}{2}{t^2}} \right)dt}  = 8\,\,\left( m \right).\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com