Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình trụ có \(O,\,\,O'\)  là tâm hai đáy. Xét hình chữ nhật \(ABCD\) có \(A,\,\,B\) cùng thuộc

Câu hỏi số 415821:
Vận dụng

Cho hình trụ có \(O,\,\,O'\)  là tâm hai đáy. Xét hình chữ nhật \(ABCD\) có \(A,\,\,B\) cùng thuộc \(\left( O \right)\) và \(C,\,\,D\)  cùng thuộc \(\left( {O'} \right)\) sao cho \(AB = a\sqrt 3 \), \(BC = 2a\) đồng thời \(\left( {ABCD} \right)\) tạo với mặt phẳng đáy hình trụ góc \({60^0}\). Thể tích khối trụ bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:415821
Phương pháp giải

- Xác định góc giữa mặt \(\left( {ABCD} \right)\) và mặt đáy.

- Sử dụng tỉ số lượng giác của góc nhọn và định lí Pytago tính chiều cao và bán kính đáy của hình trụ.

- Thể tích khối trụ có chiều cao \(h\), bán kính đáy \(r\) là \(V = \pi {r^2}h\).

Giải chi tiết

Gọi \(M,\,\,N\) lần lượt là trung điểm của \(CD,\,\,AB\) và \(I\) là trung điểm của \(OO'\).

Ta có:

\(\left\{ \begin{array}{l}\left( {ABCD} \right) \cap \left( {O'CD} \right) = CD\\IM \subset \left( {ABCD} \right),\,\,IM \bot CD\\O'M \subset \left( {O'CD} \right),\,\,O'M \bot CD\end{array} \right.\) \( \Rightarrow \angle \left( {\left( {ABCD} \right);\left( {O'BC} \right)} \right) = \angle \left( {IM;O'M} \right) = \angle IMO' = {60^0}\).

Ta có: \(MN = BC = 2a\) \( \Rightarrow IM = \dfrac{1}{2}MN = a\).

Xét tam giác vuông \(O'IM\) có: \(O'M = IM.\cos {60^0} = \dfrac{a}{2}\), \(O'I = IM.\sin {60^0} = \dfrac{{a\sqrt 3 }}{2}\).

\( \Rightarrow \) Chiều cao của khối trụ là \(h = OO' = 2O'I = a\sqrt 3 \).

Áp dụng định lí Pytago trong tam giác vuông \(O'CM\) có: \(O'C = \sqrt {O'{M^2} + C{M^2}}  = \sqrt {\dfrac{{{a^2}}}{4} + \dfrac{{3{a^2}}}{4}}  = a\).

\( \Rightarrow \) Bán kính đáy của khối trụ là \(r = O'C = a\).

Vậy thể tích của khối trụ là: \(V = \pi {r^2}h = \pi .{a^2}.a\sqrt 3  = \pi {a^3}\sqrt 3 \).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com