Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Khối chóp có đáy là hình bình hành, một cạnh đáy bằng \(a\) và các cạnh bên đều bằng

Câu hỏi số 415822:
Vận dụng cao

Khối chóp có đáy là hình bình hành, một cạnh đáy bằng \(a\) và các cạnh bên đều bằng \(a\sqrt 2 \). Thể tích của khối chóp có giá trị lớn nhất là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:415822
Phương pháp giải

- Gọi \(O = AC \cap BD\), chứng minh \(SO \bot \left( {ABCD} \right)\).

- Chứng minh \(ABCD\) là hình chữ nhật.

- Đặt \(AD = a,\,\,AB = x\), tính \(SO\) theo \(a\) và \(x\).

- Tính thể tích khối chóp \({V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}}\), sử dụng BĐT Cô-si: \(ab \le \dfrac{{{a^2} + {b^2}}}{2}\,\,\left( {a,\,\,b \ge 0} \right)\).

Giải chi tiết

Gọi \(O = AC \cap BD\).

Tam giác \(SAC\) cân tại \(S\), \(SO\) là trung tuyến \( \Rightarrow SO \bot AC\).

Tam giác \(SBD\) cân tại \(S\), \(SO\) là trung tuyến \( \Rightarrow SO \bot BD\).

\( \Rightarrow SO \bot \left( {ABCD} \right)\).

Vì \(SA = SB = SC = SD\), \(SO \bot \left( {ABCD} \right)\) nên \(O\) là tâm đường tròn ngoại tiếp \(ABCD\).

Hình bình hành \(ABCD\) nội tiếp đường tròn \(\left( O \right)\) nên \(ABCD\) phải là hình chữ nhật.

Theo bài ra ta giả sử \(AD = a\) và đặt \(AB = x\,\,\left( {x > 0} \right)\).

Áp dụng định lí Pytago trong tam giác vuông \(ABC\) có: \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {x^2}} \).

\( \Rightarrow AO = \dfrac{1}{2}AC = \dfrac{1}{2}\sqrt {{a^2} + {x^2}} \).

Áp dụng định lí Pytago trong tam giác vuông \(SOA\) có: \(SO = \sqrt {S{A^2} - A{O^2}}  = \sqrt {2{a^2} - \dfrac{{{a^2} + {x^2}}}{4}}  = \dfrac{1}{2}\sqrt {7{a^2} - {x^2}} \).

Khi đó ta có \({V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}} = \dfrac{1}{3}.\dfrac{1}{2}\sqrt {7{a^2} - {x^2}} .ax = \dfrac{a}{6}x\sqrt {7{a^2} - {x^2}} \).

Áp dụng BĐT Cô-si ta có: \(x\sqrt {7{a^2} - {x^2}}  \le \dfrac{{{x^2} + 7{a^2} - {x^2}}}{2} = \dfrac{{7{a^2}}}{2}\) \( \Rightarrow {V_{S.ABCD}} \le \dfrac{a}{6}.\dfrac{{7{a^2}}}{2} = \dfrac{{7{a^3}}}{{12}}\).

Dấu “=” xảy ra \( \Leftrightarrow {x^2} = 7{a^2} - {x^2} \Leftrightarrow x = \dfrac{{a\sqrt {14} }}{2}\).

Vậy thể tích khối chóp \(S.ABCD\) đạt giá trị lớn nhất bằng \(\dfrac{{7{a^3}}}{{12}}\) \( \Leftrightarrow x = \dfrac{{a\sqrt {14} }}{2}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com