Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {{x^2} - 1} \right)\left( {x

Câu hỏi số 416237:
Thông hiểu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {{x^2} - 1} \right)\left( {x + 2} \right)\). Số điểm cực đại của hàm số là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:416237
Phương pháp giải

- Xét dấu đạo hàm.

- Điểm cực đại của hàm số là điểm mà qua đó \(f'\left( x \right)\) đổi dấu từ dương sang âm.

Giải chi tiết

Ta có \(f'\left( x \right) = 0 \Leftrightarrow {x^2}\left( {{x^2} - 1} \right)\left( {x + 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm 1\\x =  - 2\end{array} \right.\).

Bảng xét dấu \(f'\left( x \right)\):

Dựa vào bảng xét dấu ta thấy hàm số đạt cực đại tại \(x =  - 1\).

Vậy hàm số đã cho có 1 điểm cực đại.

Chọn A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com