Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\)  có \(AB = AC = BC,\)  phân giác \(BD\) và \(CE\) cắt nhau tại \(O.\) Chọn câu

Câu hỏi số 418625:
Vận dụng

Cho tam giác \(ABC\)  có \(AB = AC = BC,\)  phân giác \(BD\) và \(CE\) cắt nhau tại \(O.\) Chọn câu đúng.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:418625
Phương pháp giải

Dựa vào tính chất hai tam giác bằng nhau và tính chất hai góc kề bù.

Giải chi tiết

Vì \(BD\) và \(CE\) là tia phân giác của góc \(\widehat {ABC}\) và \(\widehat {ACB}\) nên \(\widehat {ABD} = \widehat {CBD}\) và \(\widehat {ACE} = \widehat {BCE}.\) 

Xét tam giác \(ABD\) và tam giác \(CBD\) có:

+ \(AB = AC\,\left( {gt} \right)\)

+ \(\widehat {ABD} = \widehat {CBD}\) (cmt)

+ Cạnh \(BD\) chung

Suy ra \(\Delta ABD = \Delta CBD\,\left( {c - g - c} \right)\)

\( \Rightarrow \widehat {ADB} = \widehat {BDC}\) (hai góc tương ứng); \(DC = AD\) (hai cạnh tương ứng) nên C sai.

Mà \(\widehat {ADB} + \widehat {CDB} = 180^\circ \) (hai góc kề bù)

Nên \(\widehat {ADB} = \widehat {CDB} = \frac{{180^\circ }}{2} = 90^\circ \) . Do đó \(BD \bot AC.\)

Tương tự ta có \(CE \bot AB.\)

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com