Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGTD Bách Khoa và TN THPT - Ngày 10-11/01/2026
↪ ĐGTD Bách Khoa (TSA) - Trạm 5 ↪ TN THPT - Trạm 2
Giỏ hàng của tôi

Cho hình chóp đều \(S.ABC\) có chiều cao bằng \(h\) và cạnh bên bằng \(b\). Bán kính mặt cầu

Câu hỏi số 419766:
Vận dụng

Cho hình chóp đều \(S.ABC\) có chiều cao bằng \(h\) và cạnh bên bằng \(b\). Bán kính mặt cầu ngoại tiếp hình chóp bằng

Đáp án đúng là: C

Quảng cáo

Câu hỏi:419766
Phương pháp giải

- Xác định bán kính mặt cầu ngoại tiếp chóp là giao điểm của hai trục của hai mặt bất kì.

- Sử dụng tam giác đồng dạng để tính bán kính mặt cầu.

Giải chi tiết

Gọi \(E\) là tâm tam giác đều \(ABC\) \( \Rightarrow SE \bot \left( {ABC} \right)\) và \(SE\) là trục của \(\left( {ABC} \right)\).

Gọi \(F\) là trung điểm của \(SA\). Trong \(\left( {SAE} \right)\), từ \(F\) kẻ đường thẳng vuông góc với \(SA\) và cắt \(SE\) tại \(G\).

Ta có: \(\left\{ \begin{array}{l}G \in SE \Rightarrow GA = GB = GC\\G \in GF \Rightarrow GS = GA\end{array} \right.\) \( \Rightarrow GA = GB = GC = GS\), do đó \(G\) là tâm mặt cầu ngoại tiếp chóp \(S.ABC\).

Xét \(\Delta SFG\) và \(\Delta SEA\) có: \(\angle ASE\) chung, \(\angle SFG = \angle SEA = {90^0}\).

\( \Rightarrow \Delta SFG \sim \Delta SEA\,\,\left( {g.g} \right)\) \( \Rightarrow \dfrac{{SF}}{{SE}} = \dfrac{{SG}}{{SA}}\) \( \Rightarrow SG = \dfrac{{SA.SF}}{{SE}} = \dfrac{{b.\dfrac{b}{2}}}{h} = \dfrac{{{b^2}}}{{2h}}\).

Vậy bán kính mặt cầu ngoại tiếp khối chóp \(S.ABC\) là \(R = SG = \dfrac{{{b^2}}}{{2h}}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com