Có bao nhiêu giá trị của \(x\) để \(A = \dfrac{{4\sqrt x + 16}}{{\sqrt x + 2}}\) (với \(x \ge 0\))
Có bao nhiêu giá trị của \(x\) để \(A = \dfrac{{4\sqrt x + 16}}{{\sqrt x + 2}}\) (với \(x \ge 0\)) nhận giá trị nguyên?
Đáp án đúng là: B
Quảng cáo
- Đánh giá, chặn khoảng giá trị của biểu thức \(A.\)
- Tìm các giá trị nguyên của \(A\) trong khoảng hoặc đoạn bị chặn, từ đó tìm \(x\) và đối chiếu điều kiện.
Nhiều học sinh có cách giải sai lầm như sau:
Để \(A = 4 + \dfrac{8}{{\sqrt x + 2}} \in \mathbb{Z}\) thi \(\sqrt x + 2 \in \) Ư(8) \( = \left\{ { \pm 1; \pm 2; \pm 4; \pm 8} \right\}\).
Do \(\sqrt x + 2 \ge 2\) \( \Rightarrow \sqrt x + 2 \in \left\{ {2;4;8} \right\}\) \( \Rightarrow \sqrt x \in \left\{ {0;2;6} \right\} \Rightarrow x \in \left\{ {0;4;36} \right\}\).
Cách giải này sai do \(x\) không hẳn là số nguyên.
Đáp án cần chọn là: B
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










