Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y = \dfrac{{20 + \sqrt {6x - {x^2}} }}{{\sqrt {{x^2} - 8x + 2m} }}\). Tìm tất cả các giá trị

Câu hỏi số 421928:
Vận dụng

Cho hàm số \(y = \dfrac{{20 + \sqrt {6x - {x^2}} }}{{\sqrt {{x^2} - 8x + 2m} }}\). Tìm tất cả các giá trị của \(m\) sao cho đồ thị hàm số có đúng hai đường tiệm cận đứng.

Đáp án đúng là: A

Phương pháp giải

Số tiệm cận đứng của đồ thị hàm số đã cho bằng số nghiệm của mẫu thức mà không là nghiệm của tử thức.

Giải chi tiết

Để đồ thị hàm số có 2 TCĐ thì phương trình \(f\left( x \right) = {x^2} - 8x + 2m = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \(0 \le {x_1} < {x_2} \le 6\).

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\af\left( 0 \right) \ge 0\\af\left( 6 \right) \ge 0\\0 < \dfrac{S}{2} < 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}16 - 2m > 0\\1.2m \ge 0\\1.\left( { - 12 + 2m} \right) \ge 0\\0 < \dfrac{8}{2} < 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m < 8\\m \ge 0\\m \ge 6\end{array} \right. \Leftrightarrow 6 \le m < 8\)

Vậy \(m \in \left[ {6;8} \right)\).

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com