Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây ?

Câu 422265: Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây ?


A. \(y = {x^4} - 2{x^2} - 3\).

B. \(y = {x^3} + 2{x^2} - 7x - 2\).

C. \(y =  - {x^3} + 2{x^2} - x - 3\).

D. \(y = {x^3} - 2{x^2} + x - 2\).

Câu hỏi : 422265

Phương pháp giải:

- Nhận biết đồ thị hàm số bậc ba.


- Dựa vào chiều của nét cuối cùng suy ra dấu của hệ số \(a\).


- Dựa vào điểm cực trị của hàm số để chọn đáp án đúng.

  • Đáp án : D
    (2) bình luận (0) lời giải

    Giải chi tiết:

    Quan sát đồ thị hàm số, ta thấy: đây không phải đồ thị hàm số bậc bốn trùng phương \( \Rightarrow \) Loại A.

    Do đó, đây là hàm số bậc ba (ứng với ba phương án còn lại), giả sử: \(y = a{x^3} + b{x^2} + cx + d\).

    Vì nét cuối cùng của đồ thị hàm số đi lên \( \Rightarrow a > 0\) \( \Rightarrow \) Loại C.

    Dựa vào đồ thị hàm số ta thấy: Hàm số đạt cực đại tại \({x_1} \in \left( {0;1} \right)\), cực tiểu tại \({x_2} = 1\).

    Xét đáp án B: \(y = {x^3} + 2{x^2} - 7x - 2\) có \(y' = 3{x^2} + 4x - 7 = 0 \Rightarrow \left[ \begin{array}{l}x =  - \dfrac{7}{3}\\x = 1\end{array} \right.\): Loại.

    Xét đáp án D: \(y = {x^3} - 2{x^2} + x - 2\) có \(y' = 3{x^2} - 4x + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \dfrac{1}{3}\end{array} \right.\): Thỏa mãn.

    Vậy đường cong trong hình vẽ bên là đồ thị của hàm số \(y = {x^3} - 2{x^2} + x - 2\).

    Chọn D.   

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com