Cho \(x,y\) là các số thực thỏa mãn \(x \ne 0\) và \({\left( {{3^{{x^2}}}} \right)^{3y}} = {27^x}\). Khẳng
Cho \(x,y\) là các số thực thỏa mãn \(x \ne 0\) và \({\left( {{3^{{x^2}}}} \right)^{3y}} = {27^x}\). Khẳng định nào sau đây là khẳng định đúng?
Đáp án đúng là: C
Quảng cáo
- Đưa về phương trình mũ cùng cơ số. Sử dụng công thức \({\left( {{a^m}} \right)^n} = {a^{m.n}}\).
- Giải phương trình mũ: \({a^x} = {a^y} \Leftrightarrow x = y\).
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












