Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tập hợp \(A = \left\{ {1;2;3;4;5;6} \right\}\). Gọi \(S\) là tập hợp tất cả các tam giác có độ dài ba cạnh là các phần tử của \(A\). Chọn ngẫu nhiên một phần tử thuộc \(S\). Xác suất để phần tử được chọn là một tam giác cân bằng

Câu 422854: Cho tập hợp \(A = \left\{ {1;2;3;4;5;6} \right\}\). Gọi \(S\) là tập hợp tất cả các tam giác có độ dài ba cạnh là các phần tử của \(A\). Chọn ngẫu nhiên một phần tử thuộc \(S\). Xác suất để phần tử được chọn là một tam giác cân bằng

A. \(\dfrac{6}{{34}}.\)

B. \(\dfrac{{19}}{{34}}.\)

C. \(\dfrac{{27}}{{34}}.\)

D. \(\dfrac{7}{{34}}.\)

Câu hỏi : 422854

Phương pháp giải:

Xác định số tam giác được lập từ các số đã cho.


Tìm số tam giác cân thỏa mãn.


Tính xác suất của bài toán.

  • Đáp án : C
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Áp dụng BĐT tam giác: \(\left| {a - b} \right| < c < a + b\) (với \(a,\,\,b,\,\,c\) là độ dài 3 cạnh của tam giác).

    + Tất cả các bộ ba khác nhau có giá trị bằng số đo 3 cạnh là:

    \(\left( {2;3;4} \right),\left( {2;4;5} \right),\left( {2;5;6} \right),\left( {3;4;5} \right),\left( {3;4;6} \right),\left( {3;5;6} \right),\left( {4;5;6} \right)\).

    \( \Rightarrow \) Có 7 tam giác không cân.

    + Xét các tam giác cân có cạnh đáy bằng \(a\), cạnh bên bằng \(b\) \( \Rightarrow a < 2b\).

    TH1: \(b = 1 \Rightarrow a < 2 \Rightarrow a = 1\): Có 1 tam giác cân.

    TH2: \(b = 2 \Rightarrow a < 4 \Rightarrow a \in \left\{ {1;2;3} \right\}\): Có 3 tam giác cân.

    TH3: \(b = 3 \Rightarrow a < 6 \Rightarrow a \in \left\{ {1;2;3;4;5} \right\}\): Có 5 tam giác cân.

    TH4: \(b = 4 \Rightarrow a < 8 \Rightarrow a \in \left\{ {1;2;3;4;5;6} \right\}\): Có 6 tam giác cân.

    TH5: \(b = 5 \Rightarrow a < 10 \Rightarrow a \in \left\{ {1;2;3;4;5;6} \right\}\): Có 6 tam giác cân.

    TH6: \(b = 6 \Rightarrow a < 12 \Rightarrow a \in \left\{ {1;2;3;4;5;6} \right\}\): Có 6 tam giác cân.

    \( \Rightarrow \) Có \(1 + 3 + 5 + 6.3 = 27\) tam giác cân.

    \( \Rightarrow \) Không gian mẫu: \(n\left( \Omega  \right) = 7 + 27 = 34\).

    Gọi A là biến cố: “phần tử được chọn là một tam giác cân” \( \Rightarrow n\left( A \right) = C_{27}^1 = 27\).

    Vậy xác suất của biến cố A là \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \dfrac{{27}}{{34}}\).

    Chọn C.

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com