Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong hình vẽ bên các đường cong \(\left( {{C_1}} \right):y = {a^x},\)\(\left( {{C_2}} \right):y =

Câu hỏi số 422861:
Vận dụng

Trong hình vẽ bên các đường cong \(\left( {{C_1}} \right):y = {a^x},\)\(\left( {{C_2}} \right):y = {b^y},\)\(\left( {{C_3}} \right):y = {c^z}\) và đường thẳng \(y = 4,\)\(y = 8\) tạo thành hình vuông \(MNPQ\) có canh bằng 4. Biết rằng \(abc = {2^{\frac{x}{y}}}\) với \(\dfrac{x}{y}\) tối giản và \(x,y \in {\mathbb{Z}^ + }\). Giá trị của \(x + y\) bằng:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:422861
Phương pháp giải

- Vì \(MNPQ\) là hình vuông cạnh \(MN = 4\) nên biểu diễn mối quan hệ giữa \(m,\,\,n\).

- Dựa vào \(M,\,\,P\) thuộc đồ thị hàm số \(y = {b^x}\), rút ra phương trình và tìm \(b\).

- Từ giá trị \(b\) tìm được, tìm \(m,\,\,n\).

- Thay tọa độ điểm \(N,\,\,Q\) các các đồ thị hàm số \(y = {a^x},\,\,y = {c^x}\) tìm \(a,\,\,c\).

- Tính tích \(abc\), từ đó suy ra \(x,\,\,y\) và tính tổng \(x + y\).

Giải chi tiết

Dựa vào đồ thị hàm số ta thấy \(M\left( {m;4} \right);\,\,N\left( {m;8} \right);\,\,P\left( {n;8} \right);\,\,\,Q\left( {n;4} \right)\).

Vì \(MNPQ\) là hình vuông cạnh \(MN = 4\) nên \(MQ = NP = 4\) \( \Rightarrow n - m = 4\,\,\left( * \right)\).

Vì \(M\) thuộc đồ thị hàm số \(y = {b^x}\) nên \({b^m} = 4\).

Vì \(P\) thuộc đồ thị hàm số \(y = {b^x}\) nên \({b^n} = 8\).

\( \Rightarrow \dfrac{{{b^n}}}{{{b^m}}} = \dfrac{8}{4} = 2 \Leftrightarrow {b^{n - m}} = 2 \Leftrightarrow {b^4} = 2 \Leftrightarrow b = \sqrt[4]{2} = {2^{\frac{1}{4}}}\).

Khi đó ta có: \(\left\{ \begin{array}{l}{\left( {\sqrt[4]{2}} \right)^m} = 4\\{\left( {\sqrt[4]{2}} \right)^n} = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 8\\n = 12\end{array} \right.\).

Vì \(N\) thuộc đồ thị hàm số \(y = {a^x}\) nên \({a^m} = 8 \Leftrightarrow {a^8} = 8 \Leftrightarrow a = \sqrt[8]{8} = {8^{\frac{1}{8}}} = {2^{\frac{3}{8}}}\).

Vì \(Q\) thuộc đồ thị hàm số \(y = {c^x}\) nên \({c^n} = 4 \Leftrightarrow {c^{12}} = 4 \Leftrightarrow c = \sqrt[{12}]{4} \Leftrightarrow c = {4^{\frac{1}{{12}}}} = {2^{\frac{1}{6}}}\).

\( \Rightarrow abc = {2^{\frac{3}{8}}}{.2^{\frac{1}{4}}}{.2^{\frac{1}{6}}} = {2^{\frac{{19}}{{24}}}}\) \( \Rightarrow \left\{ \begin{array}{l}x = 19\\y = 24\end{array} \right.\).

Vậy \(x + y = 19 + 24 = 43\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com