Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn tâm O đường kính \(AB = 2R.\) Vẽ dây cung \(CD\) vuông góc với \(AB\) tại \(I\)

Câu hỏi số 423523:
Vận dụng cao

Cho đường tròn tâm O đường kính \(AB = 2R.\) Vẽ dây cung \(CD\) vuông góc với \(AB\) tại \(I\) (\(I\) nằm giữa \(A\) và \(O\)). Lấy điểm \(E\) trên cung nhỏ \(BC\) (\(E\) khác \(B\) và \(C\)), \(AE\) cắt \(CD\) tại \(F.\)

a) Chứng minh tứ giác \(BEFI\) nội tiếp trong một đường tròn

b) Tính độ dài cạnh \(AC\) theo \(R\) và \(\angle ACD\) khi \(\angle BAC = {60^0}.\)

c) Chứng minh khi điểm \(E\) chạy trên cung nhỏ \(BC\) thì tâm đường tròn ngoại tiếp tam giác \(CEF\) luôn thuộc một đường thẳng cố định.

 

Quảng cáo

Câu hỏi:423523
Giải chi tiết

a) Chứng minh tứ giác  nội tiếp trong một đường tròn

Xét đường tròn \(\left( O \right)\) có \(\angle AEB = {90^0}\) (góc nội tiếp chắn nửa đường tròn)

Lại có \(\angle FIB = {90^0}\) (do \(CD \bot AB\) tại \(I\))

Xét tứ giác \(BEFI\) có: \(\angle FEB + \angle FIB = {90^0} + {90^0} = {180^0}\) mà hai góc \(\angle FEB,\angle FIB\) đối nhau nên tứ giác \(BEFI\) nội tiếp (dhnb).

b) Tính độ dài cạnh \(AC\) theo \(R\)\(\angle ACD\) khi \(\angle BAC = {60^0}.\)

Xét đường tròn \(\left( O \right)\) có \(\angle ACB = {90^0}\) (góc nội tiếp chắn nửa đường tròn)

Xét tam giác \(ABC\) vuông tại \(C\) ta có: \(\angle ABC = {90^0} - \angle BAC = {90^0} - {60^0} = {30^0}\)

Ta có: \(\cos \angle BAC = \dfrac{{AC}}{{AB}} \Leftrightarrow AC = AB.\cos \angle BAC\) \( = 2R.\cos {60^0} = 2R.\dfrac{1}{2} = R.\)

Xét đường tròn \(\left( O \right)\) có \(AB \bot CD\) tại \(I\) nên \(I\) là trung điểm của dây \(CD\) (quan hệ giữa đường kính và dây cung)

Hay \(AB\) là đường trung trực của đoạn \(CD\) , suy ra \(AC = AD\)

Do đó cung \(AC = \) cung \(AD\) (hai dây bằng nhau căng hai cung bằng nhau)

Xét đường tròn \(\left( O \right)\) có \(\angle ACD = \angle ABC = {30^0}\) (hai góc  nội tiếp chắn hai cung bằng nhau \(AC\) và \(AD\))

Nên \(\angle ACD = {30^0}.\)

Vậy \(AC = R,\angle ACD = {30^0}\) khi \(\angle BAC = {60^0}.\)

c) Chứng minh khi điểm \(E\) chạy trên cung nhỏ \(BC\) thì tâm đường tròn ngoại tiếp tam giác \(CEF\) luôn thuộc một đường thẳng cố định.

Xét đường tròn \(\left( O \right)\) có \(\angle CEA = \angle ACD\) (hai góc nội tiếp chắn hai cung bằng nhau \(CA\) và \(AD\))

Xét đường tròn ngoại tiếp tam giác \(CEF\) có \(\angle CEF = \angle ACF\)

Mà \(\angle CEF\) là góc nội tiếp chắn cung \(CF\)

Suy ra \(AC\) là tiếp tuyến của đường tròn ngoại tiếp tam giác \(CEF\)

Gọi \(J\) là tâm đường tròn ngoại tiếp tam giác \(CEF\), suy ta \(JC \bot AC\) tại \(C\) (do \(AC\) là tiếp tuyến)

Lại có \(\angle ACB = {90^0}\) (cmt) hay \(AC \bot BC\)

Suy ra \(J \in BC\)

Hay tâm đường tròn ngoại tiếp tam giác \(CEF\) luôn thuộc đường thẳng \(BC\) cố định.

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com