Cho đường tròn tâm O đường kính \(AB = 2R.\) Vẽ dây cung \(CD\) vuông góc với \(AB\) tại \(I\)
Cho đường tròn tâm O đường kính \(AB = 2R.\) Vẽ dây cung \(CD\) vuông góc với \(AB\) tại \(I\) (\(I\) nằm giữa \(A\) và \(O\)). Lấy điểm \(E\) trên cung nhỏ \(BC\) (\(E\) khác \(B\) và \(C\)), \(AE\) cắt \(CD\) tại \(F.\)
a) Chứng minh tứ giác \(BEFI\) nội tiếp trong một đường tròn
b) Tính độ dài cạnh \(AC\) theo \(R\) và \(\angle ACD\) khi \(\angle BAC = {60^0}.\)
c) Chứng minh khi điểm \(E\) chạy trên cung nhỏ \(BC\) thì tâm đường tròn ngoại tiếp tam giác \(CEF\) luôn thuộc một đường thẳng cố định.
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










