Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(4a\),  \(SA\)  vuông góc với mặt phẳng

Câu hỏi số 425915:
Vận dụng

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(4a\),  \(SA\)  vuông góc với mặt phẳng đáy, góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng đáy bằng \({30^0}\). Diện tích mặt cầu ngoại tiếp hình chóp \(S.ABC\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:425915
Phương pháp giải

- Xác định tâm mặt cầu ngoại tiếp khối chóp là giao điểm của trục của mặt đáy và cạnh bên \(SA\).

- Sử dụng tính chất tam giác đều, định lí Pytago tính bán kính \(R\) của mặt cầu.

- Diện tích mặt cầu bán kính \(R\) là \(S = 4\pi {R^2}\).

Giải chi tiết

Gọi \(G\) là trọng tâm \(\Delta ABC\), \(d\) là đường thẳng qua \(G\) và song song với \(SA\) \( \Rightarrow d \bot \left( {ABC} \right)\).

Vì \(\Delta ABC\) đều nên \(G\) cũng chính là tâm đường tròn ngoại tiếp \(\Delta ABC\), do đó đường thẳng \(d\) là trục của \(\left( {ABC} \right)\).

Kẻ đường thẳng vuông góc với \(SA\) tại trung điểm \(P\) của \(SA\), cắt đường thẳng \(d\) tại \(I\).

Ta có: \(PI\) là trung trực của \(SA\) nên \(IS = IA\).

            \(I \in d\) nên \(IA = IB = IC\).

\( \Rightarrow IS = IA = IB = IC.\)

Mặt cầu ngoại tiếp khối chóp \(S.ABC\) có tâm \(I\), bán kính \(R = IA\).

Gọi \(M\) là trung điểm của \(BC\). Vì tam giác \(ABC\) đều cạnh \(4a\) nên \(AM = \dfrac{{4a\sqrt 3 }}{2} = 2a\sqrt 3 \).

\( \Rightarrow AG = \dfrac{2}{3}AM = \dfrac{2}{3}.2a\sqrt 3  = \dfrac{{4a\sqrt 3 }}{3}\).

Vì \(AGIP\) là hình chữ nhật nên \(AG = IP = \dfrac{{4a\sqrt 3 }}{3}\).

Ta có: \(\left\{ \begin{array}{l}BC \bot AM\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAM} \right) \Rightarrow BC \bot AM\).

\(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SM \subset \left( {SBC} \right),\,\,SM \bot BC\\AM \subset \left( {ABC} \right),\,\,AM \bot BC\end{array} \right.\) \( \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right) = \angle \left( {SM;AM} \right) = \angle SMA = {30^0}\).

\( \Rightarrow SA = AM.\tan {30^0} = 2a\sqrt 3 .\dfrac{1}{{\sqrt 3 }} = 2a\) \( \Rightarrow AP = a\).

Áp dụng định lí Pytago trong tam giác vuông \(API\) có: \(IA = \sqrt {I{P^2} + A{P^2}}  = \dfrac{{a\sqrt {57} }}{3}\).

Vậy diện tích mặt cầu ngoại tiếp chóp \(S.ABC\) là: \(S = 4\pi .I{A^2} = 4\pi .{\left( {\dfrac{{a\sqrt {57} }}{3}} \right)^2} = \dfrac{{76\pi {a^2}}}{3}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com