Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu số nguyên \(x\) sao cho ứng với mỗi \(x\) có không quá \(242\) số nguyên \(y\) thỏa

Câu hỏi số 425924:
Vận dụng cao

Có bao nhiêu số nguyên \(x\) sao cho ứng với mỗi \(x\) có không quá \(242\) số nguyên \(y\) thỏa mãn\({\log _4}\left( {{x^2} + y} \right) \ge {\log _3}\left( {x + y} \right)\)?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:425924
Giải chi tiết

Xét bất phương trình \({\log _4}\left( {{x^2} + y} \right) \ge {\log _3}\left( {x + y} \right)\,\left( 1 \right)\). ĐK: \(\left\{ \begin{array}{l}x + y > 0\\{x^2} + y > 0\end{array} \right.\)

Nếu x = 0 thì \(\left( 1 \right) \Leftrightarrow \ln y\left( {\dfrac{1}{{\ln 4}} - \dfrac{1}{{\ln 3}}} \right) \ge 0 \Leftrightarrow \ln y \le 0 \Leftrightarrow y = 1\) (do y là số nguyên) (thỏa mãn yêu cầu đề bài)

Nếu x = 1 thì \(\left( 1 \right) \Leftrightarrow \ln \left( {y + 1} \right)\left( {\dfrac{1}{{\ln 4}} - \dfrac{1}{{\ln 3}}} \right) \ge 0 \Leftrightarrow \ln \left( {y + 1} \right) \le 0 \Leftrightarrow y = 0\) (do y là số nguyên) (thỏa mãn yêu cầu đề bài)

Nếu x khác 0 và 1, ta có 2 trường hợp sau:

TH1: x + y = 1, bất phương trình \(\left( 1 \right) \Leftrightarrow {\log _4}\left( {{x^2} - x + 1} \right) \ge 0\), luôn đúng với mọi x nguyên

TH2: x + y > 1, ta có \(\left( 1 \right) \Leftrightarrow \dfrac{{\ln \left( {{x^2} + y} \right)}}{{\ln \left( {x + y} \right)}} \ge \dfrac{{\ln 4}}{{\ln 3}}\,\,\,\left( 2 \right)\)

Với mỗi giá trị x nguyên, ta coi x là tham số, xét hàm số \(f\left( y \right) = \dfrac{{\ln \left( {{x^2} + y} \right)}}{{\ln \left( {x + y} \right)}}\) với y > 1 – x

Ta có \(f'\left( y \right) = \dfrac{{\dfrac{{\ln \left( {x + y} \right)}}{{{x^2} + y}} - \dfrac{{\ln \left( {{x^2} + y} \right)}}{{x + y}}}}{{{{\ln }^2}\left( {x + y} \right)}} = \dfrac{{\left( {x + y} \right)\ln \left( {x + y} \right) - \left( {{x^2} + y} \right)\ln \left( {{x^2} + y} \right)}}{{\left( {x + y} \right)\left( {{x^2} + y} \right){{\ln }^2}\left( {x + y} \right)}}\)

Do hàm số \(g\left( t \right) = t\ln t\) đồng biến trên \(\left( {1; + \infty } \right)\) và \(1 < x + y < {x^2} + y\) với mọi \(x \in \mathbb{Z}\backslash \left\{ {0;1} \right\}\)nên ta có f’(y) < 0 với mọi y thỏa mãn điều kiện.

Suy ra hàm f(y) nghịch biến trên \(\left( {1 - x; + \infty } \right)\)và \(\left( 2 \right) \Leftrightarrow 1 - x < y < {y_0}\) (*) với y0 là nghiệm của phương trình \(f\left( y \right) = \dfrac{{\ln \left( {{x^2} + y} \right)}}{{\ln \left( {x + y} \right)}} = \dfrac{{\ln 4}}{{\ln 3}} \Leftrightarrow {\log _4}\left( {{x^2} + y} \right) = {\log _3}\left( {x + y} \right)\) (3)

Đặt \({\log _4}\left( {{x^2} + {y_0}} \right) = {\log _3}\left( {x + {y_0}} \right) = u\), ta có \(\left\{ \begin{array}{l}{x^2} + {y_0} = {4^u}\\x + {y_0} = {3^u}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} - x = {4^u} - {3^u}\\x + {y_0} = {3^u}\end{array} \right.\)

Tổng kết cả hai trường hợp, ta thấy số các số nguyên y thỏa mãn bất phương trình (1) là \(\left[ {{y_0}} \right] - \left( {1 - x} \right) + 1 = \left[ {{y_0}} \right] + x\)

Giá trị này sẽ không vượt quá 242 khi và chỉ khi \({y_0} + x < 243 \Leftrightarrow {3^u} < 243 \Leftrightarrow u < 5 \Leftrightarrow {4^u} - {3^u} < 781\)

(Lưu ý là các hàm số \({3^u}\) và \({4^u} - {3^u}\) đều đồng biến)

Điều này xảy ra khi và chỉ khi

\({x^2} - x = {4^u} - {3^u} < 781 \Leftrightarrow {x^2} - x - 781 < 0\)\( \Leftrightarrow \left\{ \begin{array}{l} - 27,45 \approx \dfrac{{1 - 25\sqrt 5 }}{2} < x < \dfrac{{1 + 25\sqrt 5 }}{2} \approx 28,45\\x \ne 0;x \ne 1\end{array} \right.\).

Kết hợp với các giá trị \(x = 0,\,\,x = 1\) ta có tất cả 56 giá trị của \(x\) thỏa mãn bài toán.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com