Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một vật dao động điều hòa với phương trình \(x = A\cos \left( {\omega t + \dfrac{\pi }{6}} \right),\)

Câu hỏi số 427593:
Vận dụng

Một vật dao động điều hòa với phương trình \(x = A\cos \left( {\omega t + \dfrac{\pi }{6}} \right),\) chu kì \(T.\) Kể từ thời điểm ban đầu thì sau thời gian bằng bao nhiêu lần chu kì, vật qua vị trí cách vị trí cân bằng \(\dfrac{A}{2}\) lần thứ \(2001?\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:427593
Phương pháp giải

Sử dụng vòng tròn lượng giác và công thức \(\Delta t = \dfrac{{\Delta \varphi }}{\omega }\)

Giải chi tiết

Thời gian vật đi qua vị trí cách vị trí cân bằng \(\dfrac{A}{2}\) lần thứ 2001 là: t2001 = t2000 + t1

Trong 1 chu kì, vật đi qua vị trí cách vị trí cân bằng \(\dfrac{A}{2}\) 4 lần \( \Rightarrow {t_{2000}} = 500T\)

Từ VTLG, ta thấy thời điểm đầu tiên vật đi đến vị trí cách vị trí cân bằng \(\dfrac{A}{2}\) lần đầu tiên, vật quét được góc \(\dfrac{\pi }{6}.\)

Vậy áp dụng mối liên hệ giữa góc quét \(\Delta \varphi \) và khoảng thời gian ∆t, ta có:

\(\Delta \varphi  = \dfrac{\pi }{6} \Rightarrow {t_1} = \dfrac{{\Delta \varphi }}{\omega } = \dfrac{{\dfrac{\pi }{6}}}{{\dfrac{{2\pi }}{T}}} = \dfrac{T}{{12}}{\mkern 1mu}  \Rightarrow {t_{2001}} = 500T + \dfrac{T}{{12}}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com