Ký hiệu \(M\) và \(m\) tương ứng là GTLN và GTNN của hàm số \(y = {x^2} - 2x + 5\) trên miền \(\left[
Ký hiệu \(M\) và \(m\) tương ứng là GTLN và GTNN của hàm số \(y = {x^2} - 2x + 5\) trên miền \(\left[ {2;7} \right].\) Phát biểu nào sau đây đúng?
Đáp án đúng là: D
Quảng cáo
Xác định hoành độ đỉnh \({x_I}\) xem có thuộc đoạn \(\left[ {a;b} \right]\) cần tìm GTLN, GTNN hay không?
Nếu \({x_I} \notin \left[ {a;b} \right]\) thì ta tính \(f\left( a \right);f\left( b \right)\) và so sánh ta được GTLN, GTNN.
Xét hàm số \(y = {x^2} - 2x + 5\) trên \(\left[ {2;\,\,7} \right]\) ta có BBT:
Đỉnh của đồ thị hàm số \(y = {x^2} - 2x + 5\) là \(I\left( {1;\,\,4} \right)\)
Dựa vào BBT ta có: \(M = \mathop {Max}\limits_{\left[ {2;\,\,7} \right]} y = 40\) khi \(x = 7\) và \(m = \mathop {Min}\limits_{\left[ {2;\,\,7} \right]} y = 5\) khi \(x = 2.\)
\( \Rightarrow M = 8m\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com