Cho hàm số \(y = a{x^2} + bx + c,\,\,a \ne 0,\) biết hàm số đạt giá trị lớn nhất
Cho hàm số \(y = a{x^2} + bx + c,\,\,a \ne 0,\) biết hàm số đạt giá trị lớn nhất trên \(\mathbb{R}\) bằng 4 khi \(x = - 1\) và tổng bình phương các nghiệm của phương trình \(y = 0\) bằng 10. Hàm số đã cho là hàm số nào sau đây?
Đáp án đúng là: D
Quảng cáo
Vì hàm số đạt giá trị lớn nhất trên \(\mathbb{R}\) bằng 4 khi \(x = - 1\) nên ta có đỉnh \(I\left( { - 1;4} \right)\) được hệ 2 phương trình 3 ẩn \(a,\,\,b,\,\,c.\)
Sử dụng giả thiết tổng bình phương các nghiệm của phương trình \(y = 0\) bằng 10 tức \(x_1^2 + x_2^2 = 10\).
Áp dụng định lý Vi-et được phương trình thứ 3 ẩn \(a,\,\,b,\,\,c.\)
Ta giải hệ 3 phương trình 3 ẩn được \(a,\,\,b,\,\,c\) cần tìm.
Đáp án cần chọn là: D
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












