Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Nghiệm của phương trình lượng giác \({\cos ^2}x - \cos x = 0\) thỏa mãn điều kiện \(0 < x <

Câu hỏi số 434762:
Nhận biết

Nghiệm của phương trình lượng giác \({\cos ^2}x - \cos x = 0\) thỏa mãn điều kiện \(0 < x < \pi \) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:434762
Phương pháp giải

- Đưa phương trình về dạng phương trình tích.

- Giải phương trình lượng giác cơ bản.

- Tìm các nghiệm thỏa mãn \(0 < x < \pi \).

Giải chi tiết

Ta có \({\cos ^2}x - \cos x = 0 \Leftrightarrow \cos x\left( {\cos x - 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\cos x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k\pi \\x = k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

+ Xét họ nghiệm \(x = \dfrac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Ta có: \(0 < x < \pi  \Rightarrow 0 < \dfrac{\pi }{2} + k\pi  < \pi  \Leftrightarrow  - \dfrac{1}{2} < k < \dfrac{1}{2}\).

Mà \(k \in \mathbb{Z} \Rightarrow k = 0 \Rightarrow x = \dfrac{\pi }{2}\).

+ Xét họ nghiệm \(x = k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Ta có: \(0 < x < \pi  \Rightarrow 0 < k2\pi  < \pi  \Leftrightarrow 0 < k < \dfrac{1}{2}\).

Mà \(k \in \mathbb{Z} \Rightarrow k \in \emptyset \).

Vậy phương trình đã cho có duy nhất 1 nghiệm thỏa mãn là \(x = \dfrac{\pi }{2}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com