Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số nghiệm của phương trình \(\sqrt {x + 8 - 2\sqrt {x + 7} }  = \)\(2 - \sqrt {x + 1 - \sqrt {x + 7} } \)

Câu hỏi số 450577:
Vận dụng cao

Số nghiệm của phương trình \(\sqrt {x + 8 - 2\sqrt {x + 7} }  = \)\(2 - \sqrt {x + 1 - \sqrt {x + 7} } \) là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:450577
Phương pháp giải

Tìm điều kiện xác định và đặt ẩn phụ \(t = \sqrt {x + 7} ,\left( {t \ge 0} \right)\) để giải phương trình

Giải chi tiết

Điều kiện: \(x \ge  - 7\)

\(\begin{array}{l}\sqrt {x + 8 - 2\sqrt {x + 7} }  = 2 - \sqrt {x + 1 - \sqrt {x + 7} } \\ \Leftrightarrow \sqrt {x + 7 - 2\sqrt {x + 7}  + 1}  = 2 - \sqrt {x + 7 - \sqrt {x + 7}  - 6} \end{array}\)

Đặt \(t = \sqrt {x + 7} ,\left( {t \ge 0} \right)\)

Ta có: \(\sqrt {{t^2} - 2t + 1}  = 2 - \sqrt {{t^2} - t - 6} \)\( \Leftrightarrow \left| {t - 1} \right| = 2 - \sqrt {{t^2} - t - 6} \)

Nếu \(t \ge 1\), ta có

\(\begin{array}{l}\,\,\,\,\,\,\,\,t - 1 = 2 - \sqrt {{t^2} - t - 6} \\ \Leftrightarrow 3 - t = \sqrt {{t^2} - t - 6} \\ \Leftrightarrow \left\{ \begin{array}{l}{t^2} - t - 6 = 9 - 6t + {t^2}\\t \le 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}5t = 15\\t \le 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 3\\t \le 3\end{array} \right. \Leftrightarrow t = 3\\ \Leftrightarrow \sqrt {x + 7}  = 3\\ \Leftrightarrow x + 7 = 9\\ \Leftrightarrow x = 2\,\,\,\,\left( {tm} \right)\end{array}\)

Nếu \(t < 1\), ta có

\(\begin{array}{l}1 - t = 2 - \sqrt {{t^2} - t - 6} \\ \Leftrightarrow 1 + t = \sqrt {{t^2} - t - 6} \\ \Leftrightarrow \left\{ \begin{array}{l}{t^2} - t - 6 = 1 + 2t + {t^2}\\t \ge  - 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}3t =  - 7\\t \ge  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t =  - \dfrac{7}{3}\\t \ge  - 1\end{array} \right. \Leftrightarrow t \in \emptyset \end{array}\)

Vậy \(S = \left\{ 2 \right\}\)

Chọn A.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com