Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\mathop {\lim }\limits_{x \to 2}

Câu hỏi số 452972:
Vận dụng cao

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 1}}{{{x^2} - x - 2}} = 3\). Tính \(\mathop {\lim }\limits_{x \to 2} \dfrac{{{f^3}\left( x \right) + 3f\left( x \right) - 4}}{{{x^2} - 2x}}\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:452972
Phương pháp giải

- Đặt \(\dfrac{{f\left( x \right) - 1}}{{{x^2} - x - 2}} = g\left( x \right)\), biểu diễn \(f\left( x \right)\) theo \(g\left( x \right)\) và tính \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\).

- Phân tích biểu thức \(\dfrac{{{f^3}\left( x \right) + 3f\left( x \right) - 4}}{{{x^2} - 2x}}\) thành tích 2 phân thức, 1 phân thức dạng \(\dfrac{0}{0}\) và một phân thức xác định.

- Dựa vào giới hạn đề bài.

Giải chi tiết

Đặt \(\dfrac{{f\left( x \right) - 1}}{{{x^2} - x - 2}} = g\left( x \right) \Rightarrow f\left( x \right) = \left( {{x^2} - x - 2} \right)g\left( x \right) + 1\).

Khi đó ta có: \(\mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 1}}{{{x^2} - x - 2}} = 3 \Rightarrow \mathop {\lim }\limits_{x \to 2} g\left( x \right) = 3\).

\( \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \left[ {\left( {{x^2} - x - 2} \right)g\left( x \right) + 1} \right] = 1\).

Ta có:

\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to 2} \dfrac{{{f^3}\left( x \right) + 3f\left( x \right) - 4}}{{{x^2} - 2x}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left[ {f\left( x \right) - 1} \right]\left[ {{f^2}\left( x \right) + f\left( x \right) + 4} \right]}}{{x\left( {x - 2} \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 1}}{{x - 2}}.\mathop {\lim }\limits_{x \to 2} \dfrac{{{f^2}\left( x \right) + f\left( x \right) + 4}}{x}\end{array}\)

Theo bài ra ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,\mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 1}}{{{x^2} - x - 2}} = 3\\ \Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 1}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} = 3\\ \Leftrightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 1}}{{x - 2}}.\dfrac{1}{{x + 1}} = 3\\ \Leftrightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 1}}{{x - 2}}.\mathop {\lim }\limits_{x \to 2} \dfrac{1}{{x + 1}} = 3\\ \Leftrightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 1}}{{x - 2}}.\dfrac{1}{3} = 3\\ \Leftrightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 1}}{{x - 2}} = 9\end{array}\)

Vậy \(\mathop {\lim }\limits_{x \to 2} \dfrac{{{f^3}\left( x \right) + 3f\left( x \right) - 4}}{{{x^2} - 2x}} = 9.\dfrac{{1 + 1 + 4}}{2} = 27\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com