Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\)thỏa mãn\(\mathop {\lim }\limits_{x \to 2}

Câu hỏi số 453698:
Vận dụng cao

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\)thỏa mãn\(\mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 16}}{{x - 2}} = 12.\) Giới hạn \(\mathop {\lim }\limits_{x \to 2} \dfrac{{\sqrt {2f\left( x \right) - 16}  - 4}}{{{x^2} + x - 6}}\)bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:453698
Phương pháp giải

- Tính \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\).

- Sử dụng phương pháp nhân liên hợp.

- Tách giới hạn cần tính thành tích hai giới hạn, trong đó một giới hạn đề bài cho.

Giải chi tiết

Đặt \(g\left( x \right) = \dfrac{{f\left( x \right) - 16}}{{x - 2}}\) ta có: \(f\left( x \right) = \left( {x - 2} \right)g\left( x \right) + 16\).

\( \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \left[ {\left( {x - 2} \right)g\left( x \right) + 16} \right] = 16\).

Ta có:

\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to 2} \dfrac{{\sqrt {2f\left( x \right) - 16}  - 4}}{{{x^2} + x - 6}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{2f\left( x \right) - 16 - 16}}{{\left( {{x^2} + x - 6} \right)\left( {\sqrt {2f\left( x \right) - 16}  + 4} \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{2f\left( x \right) - 32}}{{\left( {x - 2} \right)\left( {x + 3} \right)\left( {\sqrt {2f\left( x \right) - 16}  + 4} \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 16}}{{x - 2}}.\mathop {\lim }\limits_{x \to 2} \dfrac{2}{{\left( {x + 3} \right)\left( {\sqrt {2f\left( x \right) - 16}  + 4} \right)}}\\ = 12.\dfrac{2}{{5.\left( {\sqrt {2.16 - 16}  + 4} \right)}} = \dfrac{3}{5}\end{array}\)

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com