Trong mặt phẳng tọa độ \(Oxy\), cho hai điểm \(A\left( { - 1;\,\,2} \right)\),\(B\left( {3;\,\,1} \right)\)
Trong mặt phẳng tọa độ \(Oxy\), cho hai điểm \(A\left( { - 1;\,\,2} \right)\),\(B\left( {3;\,\,1} \right)\) và đường thẳng \(\left( d \right):\left\{ \begin{array}{l}x = 1 + t\\y = 2 + t\end{array} \right.\) (\(t\) là tham số)
Trả lời cho các câu 1, 2, 3 dưới đây:
Lập phương trình tổng quát của đường thẳng \(\left( {d'} \right)\) đi qua \(A\) và vuông góc với \(\left( d \right)\).
Đáp án đúng là: D
\(\left( d \right) \bot \left( {d'} \right) \Leftrightarrow {\vec n_{d'}}.{\vec n_d} = 0\)
\( \Rightarrow \left( d \right)\) đi qua \(A\left( { - 1;\,\,2} \right)\) nhận \({\vec n_d}\) là VTPT
Đáp án cần chọn là: D
Tìm tọa độ điểm \(A'\) đối xứng với \(A\) qua \(\left( d \right)\).
Đáp án đúng là: C
Giả sử \(\left( d \right) \cap \left( {d'} \right) = H\)\( \Rightarrow \) \(H\) là trung điểm của \(AA'\). Tọa độ điểm \(H\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}{x_H} = 1 + t\\{y_H} = 2 + t\\{x_H} + {y_H} - 1 = 0\end{array} \right.\).
Đáp án cần chọn là: C
Tìm tọa độ điểm \(M\) trên \(\left( d \right)\) sao cho \(M\) cách \(B\) một khoảng bằng \(\sqrt 5 \).
Đáp án đúng là: B
\(M \in \left( d \right):\left\{ \begin{array}{l}x = 1 + t\\y = 2 + t\end{array} \right.\) \( \Rightarrow M\left( {1 + t;\,\,2 + t} \right)\)sau đó áp dụng công thức tính độ dài véc tơ để tìm tọa độ điểm M .
Đáp án cần chọn là: B
Quảng cáo
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












