Cho hai số dương \(a,\,\,b\) thỏa mãn \(\left\{ \begin{array}{l}{\log _4}a + {\log _2}{b^2} = 3\\{\log _4}{a^2}
Cho hai số dương \(a,\,\,b\) thỏa mãn \(\left\{ \begin{array}{l}{\log _4}a + {\log _2}{b^2} = 3\\{\log _4}{a^2} + {\log _2}b = 9\end{array} \right.\). Tính \(a + 2b\).
Đáp án đúng là: B
Quảng cáo
- Sử dụng công thức \({\log _a}{b^m} = m{\log _a}b\,\,\left( {0 < a \ne 1,\,\,b > 0} \right)\), giải hệ phương trình tìm \({\log _4}a,\,\,{\log _2}b\).
- Từ đó tìm \(a,\,\,b\) và tính \(a + 2b\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












