Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f(x) = \left| {{x^3} - 3{x^2} + m} \right|\). Có bao nhiêu số nguyên \(m\) để \(\mathop {\min

Câu hỏi số 464284:
Vận dụng cao

Cho hàm số \(f(x) = \left| {{x^3} - 3{x^2} + m} \right|\). Có bao nhiêu số nguyên \(m\) để \(\mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) \le 3\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:464284
Phương pháp giải

- Đặt \(g\left( x \right) = {x^3} - 3{x^2} + m\), tìm \(\mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right);\,\,\mathop {\max }\limits_{\left[ {1;3} \right]} g\left( x \right)\).

- Suy ra \(\mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = \left\{ {\left| {\mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right)} \right|;\,\,\left| {\mathop {\max }\limits_{\left[ {1;3} \right]} g\left( x \right)} \right|} \right\}\).

- Xét các TH:

+ TH1: \(\mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = \left| {\mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right)} \right| \Leftrightarrow \left\{ \begin{array}{l}\left| {\mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right)} \right| \le 3\\\left| {\mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right)} \right| \le \left| {\mathop {\max }\limits_{\left[ {1;3} \right]} g\left( x \right)} \right|\end{array} \right.\).

+ TH2: \(\mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = \left| {\mathop {\max }\limits_{\left[ {1;3} \right]} g\left( x \right)} \right| \Leftrightarrow \left\{ \begin{array}{l}\left| {\mathop {\max }\limits_{\left[ {1;3} \right]} g\left( x \right)} \right| \le 3\\\left| {\mathop {\max }\limits_{\left[ {1;3} \right]} g\left( x \right)} \right| \le \left| {\mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right)} \right|\end{array} \right.\).

Giải chi tiết

Đặt \(g\left( x \right) = {x^3} - 3{x^2} + m\) ta có \(g'\left( x \right) = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \notin \left[ {1;3} \right]\\x = 2 \in \left[ {1;3} \right]\end{array} \right.\).

Ta có: \(g\left( 2 \right) = m - 4;\,\,g\left( 1 \right) = m - 2,\,\,g\left( 3 \right) = m\) \( \Rightarrow \left\{ \begin{array}{l}\mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right) = m - 4\\\mathop {\max }\limits_{\left[ {1;3} \right]} g\left( x \right) = m\end{array} \right.\).

\( \Rightarrow \mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = \left\{ {\left| {m - 4} \right|;\left| m \right|} \right\}\).

TH1: \(\mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = \left| {m - 4} \right| \Leftrightarrow \left\{ \begin{array}{l}\left| {m - 4} \right| \le 3\\\left| {m - 4} \right| \le \left| m \right|\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 3 \le m - 4 \le 3\\{\left( {m - 4} \right)^2} \le {m^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 \le m \le 7\\ - 8m + 16 \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 \le m \le 7\\m \ge 2\end{array} \right. \Leftrightarrow 2 \le m \le 7\).

TH2: \(\mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = \left| m \right| \Leftrightarrow \left\{ \begin{array}{l}\left| m \right| \le 3\\\left| m \right| \le \left| {m - 4} \right|\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 3 \le m \le 3\\{m^2} \le {\left( {m - 4} \right)^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 3 \le m \le 3\\ - 8m + 16 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 3 \le m \le 3\\m \le 2\end{array} \right. \Leftrightarrow  - 3 \le m \le 2\).

Vậy \( - 3 \le m \le 7\). Vậy có 11 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com