Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân, \(AB = BC = 2a\). Tam giác \(SAC\) cân tại
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân, \(AB = BC = 2a\). Tam giác \(SAC\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với \(\left( {ABC} \right)\), \(SA = \sqrt 3 a\). Góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) bằng:
Đáp án đúng là: A
Quảng cáo
- Gọi \(H\) là trung điểm của \(AC\), chứng minh \(SH \bot \left( {SAC} \right),\,\,BH \bot \left( {SAC} \right)\).
- Trong \(\left( {SAB} \right)\) kẻ \(BI \bot SA\), chứng minh \(\angle \left( {\left( {SAB} \right);\left( {SAC} \right)} \right) = \angle \left( {BH;HI} \right)\).
- Sử dụng tính chất tam giác vuông cân, định lí Pytago, hệ thức lượng trong tam giác vuông và tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













