Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y\) có không quá 10 số nguyên \(x\) thỏa
Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y\) có không quá 10 số nguyên \(x\) thỏa mãn \(\left( {{2^{x + 1}} - \sqrt 2 } \right)\left( {{2^x} - y} \right) < 0\)?
Đáp án đúng là: A
Quảng cáo
- Giải bất phương trình tìm khoảng của \(x\).
- Từ điều kiện không có quá 10 số nguyên \(x\) thỏa mãn chặn giá trị của \(y\) và tìm số giá trị \(y\) thỏa mãn.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












