Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz,\) cho hai điểm \(A\left( {4;0;4} \right)\) và \(B\left( {2;4;0} \right)\). Điểm \(M\)

Câu hỏi số 473982:
Vận dụng

Trong không gian \(Oxyz,\) cho hai điểm \(A\left( {4;0;4} \right)\) và \(B\left( {2;4;0} \right)\). Điểm \(M\) di động trên tia \(Oz\), điểm \(N\) di động trên tia \(Oy\). Đường gấp khúc \(AMNB\) có độ dài nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng phần chục).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:473982
Phương pháp giải

- Gọi \(H,\,\,K\) là hình chiếu của \(A\) trên \(Oz\) và \(B\) trên \(Oy\).

- Gọi \(A'\left( {0; - 4;4} \right);B'\left( {0;4; - 2} \right)\). Chứng minh \(AM = A'M\), \(BN = B'N\).

- Độ dài đường gấp khúc \(AMNB\) là \(AM + MN + NB = A'M + MN + NB' \ge A'B'\).

Giải chi tiết

Ta có \(H\left( {0;0;4} \right)\) và \(K\left( {0;4;0} \right)\) là hình chiếu của \(A\) trên \(Oz\) và \(B\) trên \(Oy\)

Gọi \(A'\left( {0; - 4;4} \right);B'\left( {0;4; - 2} \right)\).

Xét hai tam giác vuông \(AHM;AHA'\) có chung\(HM;\,\,HA = HA' = 4 \Rightarrow \Delta AHM = \Delta A'HM\) (2 cạnh góc vuông) \( \Rightarrow AM = A'M\)

Chứng minh tương tự ta có \(BN = B'N\) .

Độ dài đường gấp khúc \(AMNB\) là \(AM + MN + NB = A'M + MN + NB' \ge A'B' = 10\).

(Lưu ý rằng các điểm \(A',M,N,B'\) cùng nằm trên mặt phẳng \(Oyz\)).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com