Cho hình lăng trụ \(ABC.A'B'C'\) có tam giác \(ABC\) vuông tại \(A\), \(AB = a\), \(AC
Cho hình lăng trụ \(ABC.A'B'C'\) có tam giác \(ABC\) vuông tại \(A\), \(AB = a\), \(AC = a\sqrt 3 \), \(AA' = 2a\). Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( {A'B'C'} \right)\) trùng với trung điểm \(H\) của đoạn \(B'C'\) (tham khảo hình vẽ dưới đây). Khoảng cách giữa hai đường thẳng \(AA'\) và \(BC'\) bằng:

Đáp án đúng là: D
Quảng cáo
- Chứng minh \(d\left( {AA';BC'} \right) = d\left( {A;\left( {BCC'B'} \right)} \right)\), sử dụng định lí khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách từ đường thẳng này đến mặt phẳng song song và chứa đường thẳng kia.
- Trong \(\left( {ABC} \right)\) kẻ \(AK \bot BC\,\,\left( {K \in BC} \right)\), trong \(\left( {AHK} \right)\) kẻ \(AI \bot HK\,\,\left( {I \in HK} \right)\), chứng minh \(AI \bot \left( {BCC'B'} \right)\)
- Sử dụng định lí Pytago và hệ thức lượng trong tam giác vuông tính khoảng cách.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













