Cho hàm số \(f\left( x \right)\) có đạo hàm trên đoạn \(\left[ {1;2} \right]\), \(f\left( 2 \right) = 1\)
Cho hàm số \(f\left( x \right)\) có đạo hàm trên đoạn \(\left[ {1;2} \right]\), \(f\left( 2 \right) = 1\) và \(f\left( 4 \right) = 2021\). Giá trị \(I = \int\limits_1^2 {f'\left( {2x} \right)dx} \) bằng:
Đáp án đúng là: B
Quảng cáo
- Sử dụng phương pháp đưa biến vào vi phân.
- Sử dụng công thức tích phân Niu-tơn Leibniz: \(\int\limits_a^b {f'\left( x \right)dx} = f\left( b \right) - f\left( a \right)\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












