Cho \(\left( {{C_\alpha }} \right):\,\,{x^2} + {y^2} - 2x\cos \alpha - 2y\sin \alpha + \cos 2\alpha =
Cho \(\left( {{C_\alpha }} \right):\,\,{x^2} + {y^2} - 2x\cos \alpha - 2y\sin \alpha + \cos 2\alpha = 0\) (với \(\alpha \ne k\pi \)). Xác định \(\alpha \) để \(\left( {{C_\alpha }} \right)\) có bán kính lớn nhất.
Đáp án đúng là: A
Quảng cáo
Đường tròn \(\left( C \right):\,\,{x^2} + {y^2} - 2ax - 2by + c = 0\) có bán kính \(R = \sqrt {{a^2} + {b^2} - c} \).
Sử dụng công thức nhân đôi \(\cos 2\alpha = 1 - 2{\sin ^2}\alpha \).
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












