Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một con lắc đơn dao động điều hòa với chu kì T tại nơi có thêm ngoại lực có độ lớn F

Câu hỏi số 488900:
Vận dụng cao

Một con lắc đơn dao động điều hòa với chu kì T tại nơi có thêm ngoại lực có độ lớn F theo phương ngang. Nếu quay phương ngoại lực một góc \(\alpha \) \(\left( {{0^0} < \alpha  < {{90}^0}} \right)\) trong mặt phẳng thẳng đứng và giữ nguyên độ lớn thì chu kì dao động là \({T_1} = 2,4{\rm{s}}\) hoặc \({T_2} = 4,8s\). Chu kì T gần giá trị nào nhất sau đây?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:488900
Phương pháp giải

Sử dụng các biểu thức:

+ Gia tốc biểu kiến của con lắc khi ngoại lực hướng theo phương ngang: \(g' = \sqrt {{g^2} + {a^2}} \)

+ Gia tốc biểu kiến của con lắc khi ngoại lực hợp với phương thẳng đứng góc \(\beta \): \(g' = \sqrt {{g^2} + {a^2} - 2{\rm{a}}g.\cos \beta } \)

+ Chu kì dao động của con lắc đơn: \(T = 2\pi \sqrt {\frac{l}{g}} \)

Giải chi tiết

Con lắc đơn có chu kì dao động: \(T = 2\pi \sqrt {\frac{l}{g}} \)

\( \Rightarrow {T^2} = 4{\pi ^2}.\frac{l}{g} \Rightarrow g \sim \frac{1}{{{T^2}}}\)

+ Ban đầu \(\overrightarrow F \) theo phương ngang, ta có gia tốc biểu kiến khi này \(g' = \sqrt {{g^2} + {a^2}} \)

+ Khi \(\overrightarrow F \) hướng xuống

Có:\(\beta  = {90^0} + \alpha  \Rightarrow \cos \beta  = \sin \alpha \)  

Gia tốc hiệu dụng khi này: \({g_1} = \sqrt {{g^2} + {a^2} - 2ag\sin \alpha } \)

\( \Rightarrow g_1^2 = {g^2} + {a^2} - 2ag\sin \alpha \,\,\,\,\left( 1 \right)\)

+ Khi \(\overrightarrow F \) hướng lên trên

Ta có \(\beta  = {90^0} - \alpha  \Rightarrow co{\rm{s}}\beta  = {\rm{ - sin}}\alpha \)

Gia tốc hiệu dụng khi này: \({g_2} = \sqrt {{g^2} + {a^2} + 2{\rm{a}}g\sin \alpha } \)

\( \Rightarrow g_2^2 = {g^2} + {a^2} + 2{\rm{a}}g\sin \alpha \,\,\,\,\,\left( 2 \right)\)

Từ (1) và (2) ta có: \(g_1^2 + g_2^2 = 2\left( {{g^2} + {a^2}} \right)\)

\( \Rightarrow \frac{1}{{T_1^4}} + \frac{1}{{T_2^4}} = \frac{2}{{{T^4}}} \Leftrightarrow \frac{1}{{2,{4^4}}} + \frac{1}{{1,{8^4}}} = \frac{2}{{{T^4}}} \Rightarrow T = 1,9984{\rm{s}}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com