Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trên khoảng \(\left( {0; + \infty } \right)\), đạo hàm của hàm số \(y = {x^{\frac{5}{2}}}\)  là

Câu hỏi số 498413:
Nhận biết

Trên khoảng \(\left( {0; + \infty } \right)\), đạo hàm của hàm số \(y = {x^{\frac{5}{2}}}\)  là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:498413
Phương pháp giải

Sử dụng công thức tính đạo hàm \(\left( {{x^\alpha }} \right)' = \alpha {x^{\alpha  - 1}}\,\,\left( {x > 0} \right)\).

Giải chi tiết

Ta có \(\left( {{x^\alpha }} \right)' = \alpha {x^{\alpha  - 1}}\,\,\left( {x > 0} \right)\) \( \Rightarrow \left( {{x^{\frac{5}{2}}}} \right)' = \dfrac{5}{2}{x^{\frac{3}{2}}}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com