Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trên tập hợp các số phức, xét phương trình \({z^2} - 2\left( {m + 1} \right)z + {m^2} = 0\) (\(m\) là

Câu hỏi số 498446:
Vận dụng

Trên tập hợp các số phức, xét phương trình \({z^2} - 2\left( {m + 1} \right)z + {m^2} = 0\) (\(m\) là tham số thực). Có bao nhiêu giá trị của \(m\) để phương trình đó có nghiệm \({z_0}\) thỏa mãn \(\left| {{z_0}} \right| = 7\)?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:498446
Phương pháp giải

- Dựa vào giả thiết \(\left| {{z_0}} \right| = 7\) xét các TH:

TH1: \({z_0}\) là số thực, thay trực tiếp \({z_0}\) vào phương trình tìm \(m\).

TH2: \({z_0}\) là số phức, tìm điều kiện để phương trình bậc hai có nghiệm phức.

Sử dụng: Theo tính chất của phương trình bậc hai trên tập phức, nếu phương trình (*) có 1 nghiệm phức \({z_0}\) chứa \(i\) thì sẽ có 1 nghiệm phức còn lại là \(\overline {{z_0}} \) và định lí Vi-ét, từ đó tìm \(m\).

Giải chi tiết

Đặt \({z^2} - 2\left( {m + 1} \right)z + {m^2} = 0\) (*).

TH1: \({z_0}\) là nghiệm thực \( \Rightarrow \left| {{z_0}} \right| = 7 \Leftrightarrow \left[ \begin{array}{l}{z_0} = 7\\{z_0} =  - 7\end{array} \right.\).

+ Nếu \({z_0} = 7\) thay vào (*)

\(\begin{array}{l} \Rightarrow {7^2} - 14\left( {m + 1} \right) + {m^2} = 0\\ \Leftrightarrow {m^2} - 14m + 35 = 0\\ \Leftrightarrow m = 7 \pm \sqrt {14} \end{array}\)

\( \Rightarrow \) Có 2 giá trị thỏa mãn \(m = 7 \pm \sqrt {14} \) thì phương trình (*) có nghiệm \({z_0} = 7\) (tmycbt).

+ Nếu \({z_0} =  - 7\) thay vào (*)

\(\begin{array}{l} \Rightarrow 49 + 14\left( {m + 1} \right) + {m^2} = 0\\ \Leftrightarrow {m^2} + 14m + 63 = 0\end{array}\)

\( \Rightarrow \) Vô nghiệm.

TH2: \({z_0}\) là nghiệm có chứa \(i \Leftrightarrow \Delta ' = {\left( {m + 1} \right)^2} - {m^2} < 0 \Leftrightarrow 2m + 1 < 0 \Leftrightarrow m <  - \dfrac{1}{2}\).

Theo tính chất của phương trình bậc hai trên tập phức, nếu phương trình (*) có 1 nghiệm phức \({z_0}\) chứa \(i\) thì sẽ có 1 nghiệm phức còn lại là \(\overline {{z_0}} \).

Điều kiện \(\left| {{z_0}} \right| = 7 \Leftrightarrow {\left| {{z_0}} \right|^2} = 7^2 \Leftrightarrow {z_0}.\overline {{z_0}}  = {7^2} \Leftrightarrow {z_0}.\overline {{z_0}}  = 49\,\,\left( 1 \right)\).

Vì \({z_0}\) và \(\overline {{z_0}} \) là 2 nghiệm của phương trình (*), theo định lí Vi-ét ta có: \({z_0}.\overline {{z_0}}  = {m^2}\,\,\,\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow {m^2} = 49 \Leftrightarrow m =  \pm 7\).

So sánh điều kiện \(m <  - \dfrac{1}{2} \Rightarrow m =  - 7\).

Vậy tất cả TH1 và TH2 có 3 giá trị của \(m\) thỏa mãn yêu cầu bài toán (\(m = 7 \pm \sqrt {14} \) và \(m =  - 7\)).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com