Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\) với \(a,b,c\) là các số thực. Biết hàm số

Câu hỏi số 498449:
Vận dụng cao

Cho hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\) với \(a,b,c\) là các số thực. Biết hàm số \(g\left( x \right) = f\left( x \right) + f'\left( x \right) + f''\left( x \right)\) có hai giá trị cực trị là \( - 3\) và \(6.\) Diện tích hình phẳng giới hạn bởi các đường \(y = \dfrac{{f\left( x \right)}}{{g\left( x \right) + 6}}\) và \(y = 1\)  bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:498449
Giải chi tiết

* Xét phương trình hoành độ giao điểm:

\(\dfrac{{f\left( x \right)}}{{g\left( x \right) + 6}} = 1 \Leftrightarrow f\left( x \right) = g\left( x \right) + 6 \Leftrightarrow f\left( x \right) - g\left( x \right) - 6 = 0\).

(Chúng ta không cần lo điều kiện \(g\left( x \right) + 6 \ne 0\), bởi lẽ đồ thị hàm số \(y = \dfrac{{f\left( x \right)}}{{g\left( x \right) + 6}}\) khi tương giao với đường thẳng \(y = 1\) phải tạo nên một miền kín, và khi số nghiệm của phương trình \(f\left( x \right) = g\left( x \right) + 6\) nhiều hơn 2 thì ta mới phải chú ý xem xét lấy cận từ đâu đến đâu, và liệu rằng có phải từ \({x_{\min }} \to {x_{\max }}\), chẳng may đồ thị tương giao bị gián đoạn trên đoạn \(\left[ {{x_{\min }};{x_{\max }}} \right]\) mà vẫn tạo miền kín. Trên thực tế, bài toán này phương trình \(f\left( x \right) = g\left( x \right) + 6\) chỉ có 2 nghiệm (vì là phương trình bậc hai), nên người giải toán không cần quan tâm đến việc gián đoạn hay không, vì việc tồn tại nghiệm hình và hàm số là thuộc phạm trù người ra đề).

Mà \(g\left( x \right) = f\left( x \right) + f'\left( x \right) + f''\left( x \right)\) \( \Rightarrow f\left( x \right) - g\left( x \right) =  - f'\left( x \right) - f''\left( x \right)\)

\( \Rightarrow \) Phương trình hoành độ giao điểm trở thành:

\( - f'\left( x \right) - f''\left( x \right) - 6 = 0 \Leftrightarrow f'\left( x \right) + f''\left( x \right) + 6 = 0\)  (1)

Mặt khác: \(g'\left( x \right) = f'\left( x \right) + f''\left( x \right) + f'''\left( x \right)\) và \(f'''\left( x \right) = 6\) \( \Rightarrow g'\left( x \right) = f'\left( x \right) + f''\left( x \right) + 6\).

Từ phương trình (1) \( \Leftrightarrow g'\left( x \right) = 0\).

Theo giả thiết \(g\left( x \right)\) có 2 điểm cực trị \({x_1},\,\,{x_2}\) sao cho \(\left\{ \begin{array}{l}g\left( {{x_1}} \right) =  - 3\\g\left( {{x_2}} \right) = 6\end{array} \right.\) \( \Rightarrow g'\left( x \right) = 0\) có 2 nghiệm \({x_1},\,\,{x_2}\).

Vậy phương trình hoành độ giao điểm có 2 nghiệm \({x_1},\,\,{x_2}\).

\(\begin{array}{l} \Rightarrow {S_{\left( H \right)}} = \left| {\int\limits_{{x_1}}^{{x_2}} {\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right) + 6}} - 1} \right)dx} } \right| = \left| {\int\limits_{{x_1}}^{{x_2}} {\dfrac{{f\left( x \right) - g\left( x \right) - 6}}{{g\left( x \right) + 6}}dx} } \right|\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left| {\int\limits_{{x_1}}^{{x_2}} {\dfrac{{ - f'\left( x \right) - f''\left( x \right) - 6}}{{g\left( x \right) + 6}}dx} } \right| = \left| {\int\limits_{{x_1}}^{{x_2}} {\dfrac{{ - g'\left( x \right)}}{{g\left( x \right) + 6}}dx} } \right|\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left| {\int\limits_{{x_1}}^{{x_2}} {\dfrac{{g'\left( x \right)}}{{g\left( x \right) + 6}}dx} } \right| = \left| {\int\limits_{{x_1}}^{{x_2}} {\dfrac{{d\left( {g\left( x \right) + 6} \right)}}{{g\left( x \right) + 6}}} } \right| = \left| {\ln \left. {\left| {g\left( x \right) + 6} \right|} \right|_{{x_1}}^{{x_2}}} \right|\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left| {\ln \left| {g\left( {{x_2}} \right) + 6} \right| - \ln \left| {g\left( {{x_1}} \right) + 6} \right|} \right| = \left| {\ln \left| {6 + 6} \right| - \ln \left| { - 3 + 6} \right|} \right| = \ln 12 - \ln 3 = 2\ln 2\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com