Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x + 2\,\,\,\,\,khi\,\,x \ge 1\\3{x^2} + 1\,\,\,khi\,\,x

Câu hỏi số 499749:
Vận dụng

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x + 2\,\,\,\,\,khi\,\,x \ge 1\\3{x^2} + 1\,\,\,khi\,\,x < 1\end{array} \right..\) Gỉa sử \(F\) là nguyên hàm của \(f\) trên \(\mathbb{R}\) thỏa mãn \(F\left( 0 \right) = 2\). Gía trị của \(F\left( { - 1} \right) + 2F\left( 2 \right)\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:499749
Phương pháp giải

Tính nguyên hàm của \(f\left( x \right)\) khi \(x < 1\).

Tính tích phân của \(\int\limits_{ - 1}^1 {f\left( x \right)dx} \) và \(\int\limits_1^2 {f\left( x \right)dx} \), từ đó tính được \(F\left( { - 1} \right)\) và \(F\left( 2 \right)\).

Giải chi tiết

Ta có: \(I = \int\limits_0^{ - 1} {f\left( x \right)dx + 2\int\limits_0^2 {f\left( x \right)dx = F\left( { - 1} \right) - F\left( 0 \right) + 2F\left( 2 \right) - 2F\left( 0 \right)} } \)

Do đó \(I = F\left( { - 1} \right) + 2F\left( 2 \right) - 3F\left( 0 \right) = F\left( { - 1} \right) + 2F\left( 2 \right) - 6 \Rightarrow F\left( { - 1} \right) + 2F\left( 2 \right) = I + 6\)

Mà \(\int\limits_0^{ - 1} {f\left( x \right)dx =  - \int\limits_{ - 1}^0 {\left( {3{x^2} + 1} \right)dx =  - 2} } \) và \(2\int\limits_0^2 {f\left( x \right)dx = } 2\left( {\int\limits_0^1 {\left( {3{x^2} + 1} \right)dx + \int\limits_1^2 {\left( {2x + 2} \right)dx} } } \right) = 14\)

Suy ra \(I =  - 2 + 14 = 12\)

Do đó \(F\left( { - 1} \right) + 2F\left( 2 \right) = 12 + 6 = 18\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com