Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{3^{{x^2}}} - {9^x}} \right)\left( {{{\log }_2}\left( {x + 30}

Câu hỏi số 499837:
Vận dụng

Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{3^{{x^2}}} - {9^x}} \right)\left( {{{\log }_2}\left( {x + 30} \right) - 5} \right) \le 0\)?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:499837
Phương pháp giải

Tích của hai biểu thức \( \le 0\) nên hai biểu thức trái dấu, ta chia hai trường hợp.

Từ mỗi trường hợp ta giải ra các giá trị \(x\)

Đối chiếu với điều kiện xác định.

Giải chi tiết

Điều kiện xác định: \(x >  - 30\)

TH1: \(\left\{ \begin{array}{l}{3^{{x^2}}} - {9^x} \le 0\\{\log _2}\left( {x + 30} \right) - 5 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{3^{{x^2}}} \le {9^x}\\{\log _2}\left( {x + 30} \right) \ge 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} \le 2x\\x + 30 \ge {2^5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 \le x \le 2\\x \ge 2\end{array} \right.\) \( \Rightarrow x = 2\) (tmđk)

Nên có \(1\) giá trị \(x\) thỏa mãn.

TH2: \(\left\{ \begin{array}{l}{3^{{x^2}}} - {9^x} \ge 0\\{\log _2}\left( {x + 30} \right) - 5 \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{3^{{x^2}}} \ge {9^x}\\{\log _2}\left( {x + 30} \right) \le 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} \ge 2x\\x + 30 \le {2^5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 2\\x \le 0\end{array} \right.\\x \le 2\end{array} \right.\)

Kết hợp với ĐK: \(x >  - 30\) ta được \(x = \left\{ { - 29;....; - 1;0} \right\}\) nên có \(30\) giá trị \(x\) thỏa mãn.

Vậy có \(30 + 1 = 31\) giá trị \(x\) thỏa mãn.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com