Cho tam giác nhọn \(ABC\) \(\left( {AB < AC} \right)\) nội tiếp đường tròn tâm \(O\), \(E\) là điểm
Cho tam giác nhọn \(ABC\) \(\left( {AB < AC} \right)\) nội tiếp đường tròn tâm \(O\), \(E\) là điểm chính giữa cung nhỏ \(BC\).
a) Chứng minh \(\angle CAE = \angle BCE\) .
b) Gọi \(M\) là điểm trên cạnh \(AC\) sao cho \(EM = EC\) (\(M\) khác \(C\)); \(N\) là giao điểm của \(BM\) với đường tròn tâm \(O\) (\(N\) khác \(B\)). Gọi \(I\) là giao điểm của \(BM\) với \(AE\); \(K\) là giao điểm của \(AC\) với \(EN\). Chứng minh tứ giác \(EKMI\) nội tiếp.
Quảng cáo
a) Vận dụng mối quan hệ góc nội tiếp trong đường tròn
b) Sử dụng dấu hiệu nhận biết của tứ giác nội tiếp: tứ giác có tổng hai góc bằng \({180^0}\) là tứ giác nội tiếp, từ đó chứng minh \(\angle EKM + \angle EIM = {180^0}\)
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











