Cho Parabol \(\left( P \right):y = - {x^2}\) và đường thẳng \(\left( d \right):y = 5x + 6\)1) Vẽ đồ
Cho Parabol \(\left( P \right):y = - {x^2}\) và đường thẳng \(\left( d \right):y = 5x + 6\)
1) Vẽ đồ thị \(\left( P \right)\).
2) Tìm tọa độ các giao điểm của \(\left( P \right)\) và \(\left( d \right)\) bằng phép tính.
3) Viết phương trình đường thẳng \(\left( {d'} \right)\) biết \(\left( {d'} \right)\) song song \(\left( d \right)\) và \(\left( {d'} \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ lần lượt là \({x_1},\,\,{x_2}\) sao cho \({x_1}.{x_2} = - 24\).
Quảng cáo
1) Lập bảng giá trị
2) Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\), sau đó sử dụng công thức nghiệm của phương trình bậc hai một ẩn xác định nghiệm của phương trình.
3) Xác định dạng của phương trình của đường thẳng \(\left( {d'} \right)\), xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( {d'} \right)\), xác định điều kiên để phương trình có hai nghiệm phân biệt, áp dụng hệ thức Vi – ét, xác định \({x_1}{x_2}\) sau đó thay vào yêu cầu để bài.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












