Cho tam giác ABC vuông tại A (\(AB < AC\)) nội tiếp trong đường tròn tâm O. Dựng đường thẳng d
Cho tam giác ABC vuông tại A (\(AB < AC\)) nội tiếp trong đường tròn tâm O. Dựng đường thẳng d đi qua A song song với BC, đường thẳng d’ qua C song song BA, gọi D là giao điểm của d và d’. Dựng AE vuông góc với BD (E nằm trên BD), F là giao điểm của BD với đường tròn (O). Chứng minh:
1) Tứ giác \(AECD\) nội tiếp được trong đường tròn.
2) \(\angle AOF = 2\angle CAE\)
3) Tứ giác AECF là hình bình hành.
4) \(DF.DB = 2A{B^2}\)
Quảng cáo
1) Vận dụng dấu hiệu nhận biết của tứ giác nội tiếp: Tứ giác có 2 đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau là tứ giác nội tiếp.
2) Vận dụng tính của góc trong tứ giác nội tiếp và góc ở tâm và góc nội tiếp cùng chắn một cung.
3) Sử dụng dấu hiệu nhận biết hình bình hành: tứ giác có các cặp cạnh đối song song với nhau là hình bình hành.
4) Vận dụng hệ thức lượng trong tam giác vuông.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











