Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Gọi \({x_1},\,\,{x_2}\) là hai nghiệm của phương trình: \({x^2} - 2\left( {m - 3} \right)x - 6m - 7 = 0\)

Câu hỏi số 512304:
Vận dụng

Gọi \({x_1},\,\,{x_2}\) là hai nghiệm của phương trình: \({x^2} - 2\left( {m - 3} \right)x - 6m - 7 = 0\) với m là tham số. Tìm giá trị nhỏ nhất của biểu thức: \(C = {\left( {{x_1} + {x_2}} \right)^2} + 8{x_1}{x_2}\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:512304
Phương pháp giải

Điều kiện để phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0\) (hoặc \(\Delta ' > 0\))

Áp dụng Định lý Vi – ét, xác định được \({x_1} + {x_2}\) và \({x_1}.{x_2}\) sau đó thay vào biểu thức \(C\)

Vận dụng hằng đẳng thức \({\left( {A - B} \right)^2}\) để tìm giá trị nhỏ nhất.

Giải chi tiết

Phương trình \({x^2} - 2\left( {m - 3} \right)x - 6m - 7 = 0\) có \(\Delta ' = {\left( {m - 3} \right)^2} + 6m + 7 = {m^2} + 16 > 0\) với mọi \(m \in \mathbb{R}\).

Suy ra phương trình trên luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\).

Theo định lí Vi-et ta có: \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2m - 6}\\{{x_1}{x_2} =  - 6m - 7}\end{array}} \right.\)

Theo bài ra ta có:

\(C = {\left( {{x_1} + {x_2}} \right)^2} + 8{x_1}{x_2}\)

\(\begin{array}{l} \Rightarrow C = {\left( {2m - 6} \right)^2} + 8\left( { - 6m - 7} \right)\\ \Leftrightarrow C = 4{m^2} - 24m + 36 - 48m - 56\\ \Leftrightarrow C = 4{m^2} - 72m - 20\\ \Leftrightarrow C = 4\left( {{m^2} - 18m + 81} \right) - 4.81 - 20\\ \Leftrightarrow C = 4{\left( {m - 9} \right)^2} - 344\end{array}\)

Vì \({\left( {m - 9} \right)^2} \ge 0\,\,\forall m \Leftrightarrow 4{\left( {m - 9} \right)^2} \ge 0\,\,\forall m \Leftrightarrow 4{\left( {m - 9} \right)^2} - 344 \ge  - 344\,\,\forall m\).

Vậy \({C_{\min }} =  - 344\). Dấu “=” xảy ra khi và chỉ khi \(m = 9\).

Đáp án cần chọn là: A

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com