Phương trình \(\sin \left( {2x - \dfrac{\pi }{4}} \right) = \sin \left( {x + \dfrac{{3\pi }}{4}} \right)\) có
Phương trình \(\sin \left( {2x - \dfrac{\pi }{4}} \right) = \sin \left( {x + \dfrac{{3\pi }}{4}} \right)\) có tổng các nghiệm thuộc khoảng \(\left( {0;\pi } \right)\) bằng
Đáp án đúng là: A
Quảng cáo
Giải phương trình lượng giác cơ bản: \(\sin a = \sin b \Leftrightarrow \left[ \begin{array}{l}a = b + k2\pi \\a = \pi - b + k2\pi \end{array} \right.\)
Đáp án cần chọn là: A
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












