Cho phương trình \({x^2} - mx + m - 1 = 0\,\,\,\,\,\left( 1 \right)\) (\(m\) là tham số)
Cho phương trình \({x^2} - mx + m - 1 = 0\,\,\,\,\,\left( 1 \right)\) (\(m\) là tham số)
Trả lời cho các câu 1, 2, 3 dưới đây:
Giải phương trình \(\left( 1 \right)\) khi \(m = 3\)
Đáp án đúng là: A
1) Thay \(m = 3\) vào phương trình \(\left( 1 \right)\) thì ta thấy phương trình \(\left( 1 \right)\) là phương trình bậc hai một ẩn số.
Đáp án cần chọn là: A
Chứng minh rằng phương trình \(\left( 1 \right)\) luôn có nghiệm với mọi \(m\).
Đáp án đúng là: A
2) Tính \(\Delta \) (hoặc \(\Delta '\)) sau đó chứng minh \(\Delta \) (hoặc \(\Delta '\)) luôn dương với mọi giá trị của \(m\).
Đáp án cần chọn là: A
Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình \(\left( 1 \right)\). Tìm giá trị của \(m\) để \(P = {x_1}^2 + {x_2}^2\) đạt giá trị nhỏ nhất.
Đáp án đúng là: C
3) Vận dụng hệ thức Vi – ét tính được \({x_1} + {x_2},{x_1}.{x_2}\)
Biến đổi biểu thức của đề bài, xuất hiện \({x_1} + {x_2},{x_1}.{x_2}\), thay các giá trị của \(m\), biến đổi để tìm giá trị nhỏ nhất của biểu thức
Đáp án cần chọn là: C
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










