Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(B,\,\,SA\) vuông góc với đáy. Biết \(AB =

Câu hỏi số 517919:
Vận dụng

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(B,\,\,SA\) vuông góc với đáy. Biết \(AB = a\sqrt 2 ,\) \(BC = a,\) góc tạo bởi \(SC\) và \(\left( {SAB} \right)\) bằng \(30^\circ .\) Thể tích của khối chóp đã cho bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:517919
Phương pháp giải

- Tính chiều cao \(SA\) và diện tích đáy là tam giác \(ABC,\) từ đó tính được thể tích hình chóp.

Giải chi tiết

Ta có: \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC.\)

Mà tam giác \(ABC\) vuông tại \(B\) nên \(AB \bot BC\).

Suy ra: \(BC \bot \left( {SAB} \right) \Rightarrow \angle \left( {SC;\left( {SAB} \right)} \right) = \angle BSC = 30^\circ .\)

Tam giác \(SBC\) vuông tại \(B\) có \(\angle BSC = 30^\circ \) nên \(SB = BC.\cot 30^\circ  = a.\sqrt 3  = a\sqrt 3 .\)

Xét tam giác \(SAB\) vuông tại \(A\) có: \(SA = \sqrt {S{B^2} - A{B^2}}  = \sqrt {3{a^2} - 2{a^2}}  = a.\)

Vậy thể tích khối chóp \(S.ABC\) là: \({V_{S.ABC}} = \dfrac{1}{3}.SA.{S_{ABC}} = \dfrac{1}{6}.SA.AB.BC = \dfrac{1}{6}.a.a\sqrt 2 .a = \dfrac{{{a^3}\sqrt 2 }}{6}.\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com