Cho tam giác \(ABC\) vuông tại \(A\). Kẻ tia phân giác của \(\angle ABC\) cắt cạnh \(AC\) tại \(M\).
Cho tam giác \(ABC\) vuông tại \(A\). Kẻ tia phân giác của \(\angle ABC\) cắt cạnh \(AC\) tại \(M\). Trên cạnh \(BC\) lấy điểm \(N\) sao cho \(BN = BA.\)
1) Chứng minh: \(\Delta BAM = \Delta BNM\).
2) Gọi \(I\) là giao điểm của \(BM\) và \(AN\). Chứng minh \(I\) là trung điểm của đoạn thẳng \(AN\).
3) Trên tia đối của tia \(AB\) lấy điểm \(K\) sao cho \(AK = NC\). Chứng minh \(\angle ABC = \angle NMC\) và \(K,M,N\) là ba điểm thẳng hàng.
Quảng cáo
1) Chứng minh \(\Delta BAM = \Delta BNM\left( {c.g.c} \right)\)
2) Chứng minh \(BM\) là đường trung trực của đoạn thẳng \(AN\)
Mà \(I\) là giao điểm của \(BM\) và \(AN\) nên \(I\) là trung điểm của \(AN\).
3) *Chứng minh \(\angle MNC = {90^0}\)
Ta có: \(\left\{ \begin{array}{l}\angle ABC + \angle ACB = \angle BAC = {90^0}\\\angle MCN + \angle CMN = \angle MNC = {90^0}\end{array} \right.\), suy ra \(\angle ABC = \angle CMN\) (đpcm)
*Chứng minh \(\Delta MAK = \Delta MNC\left( {c.g.c} \right) \Rightarrow \angle AMK = \angle CMN\)
\( \Rightarrow \angle AMN + \angle AMK = {180^0}\)
Do đó, \(K,M,N\) là ba điểm thẳng hàng.
>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











