Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\) vuông tại \(A,M\) là trung điểm của \(AC\). Trên tia đối của tia \(MB\) lấy

Câu hỏi số 522283:
Vận dụng

Cho tam giác \(ABC\) vuông tại \(A,M\) là trung điểm của \(AC\). Trên tia đối của tia \(MB\) lấy điểm \(K\) sao cho \(BM = MK.\)

a) Chứng minh: \(\Delta ABM = \Delta CKM\);

b) Chứng minh: \(BC = AK\);

c) Chứng minh: \(CK \bot AC\).

Quảng cáo

Câu hỏi:522283
Phương pháp giải

a) Vận dụng định nghĩa của hai tam giác bằng nhau, chứng minh \(\Delta ABM = \Delta CKM\left( {c.g.c} \right)\)

b) Vận dụng định nghĩa của hai tam giác bằng nhau, chứng minh \(\Delta AMK = \Delta CMB\left( {c.g.c} \right) \Rightarrow AK = BC\)

c) Chứng minh \(\angle MCK = {90^0}\)\( \Rightarrow CK \bot AC\) (vì \(M \in AC\))

Giải chi tiết

a) Vì \(M\) là trung điểm của \(AC \Rightarrow AM = MC\) (tính chất)

Có \(\angle AMB = \angle CMK\) (hai góc đối đính)

Xét \(\Delta ABM\) và \(\Delta CKM\) có:

\(\left. \begin{array}{l}AM = MC\left( {cmt} \right)\\\angle AMB = \angle CMK\left( {cmt} \right)\\BM = MK\left( {gt} \right)\end{array} \right\} \Rightarrow \Delta ABM = \Delta CKM\left( {c.g.c} \right)\)

b) Có \(\angle AMK = \angle AMC\) (hai góc đối đỉnh)

Xét \(\Delta AMK\) và \(\Delta CMB\) có:

\(\left. \begin{array}{l}AM = MC\left( {cmt} \right)\\\angle AMK = \angle AMC\left( {cmt} \right)\\BM = MK\left( {gt} \right)\end{array} \right\} \Rightarrow \Delta AMK = \Delta CMB\left( {c.g.c} \right) \Rightarrow AK = BC\) (hai cạnh tương ứng)

c) Ta có: \(\Delta ABM = \Delta CKM \Rightarrow \angle BAM = \angle MCK\) (hai góc tương ứng)

Mà \(\angle BAM = {90^0}\) (do \(\Delta ABC\) vuông tại \(A\))

\( \Rightarrow \angle MCK = {90^0}\)

\( \Rightarrow CK \bot AM\)

\( \Rightarrow CK \bot AC\) (vì \(M \in AC\))

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com