Cho đường tròn \(\left( O \right)\) và điểm \(A\) nằm ngoài đường tròn. Qua \(A\) kẻ hai tiếp
Cho đường tròn \(\left( O \right)\) và điểm \(A\) nằm ngoài đường tròn. Qua \(A\) kẻ hai tiếp tuyến \(AB\) và \(AC\) đến \(\left( O \right)\) (\(B,C\) là các tiếp điểm). Kẻ tia \(Ax\) (nằm giữa hai tia \(AB,AO\)) cắt đường tròn tại \(E\) và \(F\)(\(E\) nằm giữa \(A\) và \(F\)).
a) Chứng minh rằng tứ giác \(ABOC\) nội tiếp đường tròn.
b) Chứng minh rằng \(A{B^2} = AE.AF\) và \(\angle OEF = \angle OHF,\) với \(H\) là giao điểm của \(AO\) và \(BC.\)
c) Đường thẳng qua \(E\) song song với \(BF\)cắt đường thẳng \(BC\) tại \(K.\) Đường thẳng \(AK\) cắt đường thẳng \(BF\) tại \(M.\) Chứng minh rằng \(MC = 2HF.\)
Quảng cáo
a) Vận dụng dấu hiệu nhận biết của tứ giác nội tiếp: chứng minh \(\angle ABO + \angle ACO = {180^0}\) \( \Rightarrow ABOC\) là tứ giác nội tiếp (dhnb).
b) + Chứng minh
+ Chứng minh là tứ giác nội tiếp
\( \Rightarrow \angle OEF = \angle OHF\) (2 góc nội tiếp cùng chắn cung \(OF\)) (đpcm).
c) Gọi \(BC \cap Ax = \left\{ G \right\}\).
Áp dụng định lí Ta-lét ta có: \(\dfrac{{EK}}{{FM}} = \dfrac{{AE}}{{AF}},\,\,\dfrac{{EK}}{{BF}} = \dfrac{{GE}}{{GF}}\,\,\,\left( 1 \right)\).
Chứng minh \(HG\) là tia phân giác của \(\angle EHF\) suy ra được \(HA\) là tia phân giác ngoài của \(\angle EHF\).
Áp dụng tính chất đường phân giác ta có: \(\dfrac{{GE}}{{GF}} = \dfrac{{AE}}{{AF}} = \dfrac{{HE}}{{HF}}\,\,\,\left( 2 \right)\)
Từ (1) và (2) \( \Rightarrow \dfrac{{EK}}{{FM}} = \dfrac{{EK}}{{BF}}\) \( \Rightarrow F\) là trung điểm của \(BM\) đồng thời chứng minh \(H\) là trung điểm của \(BC\).
\( \Rightarrow HF\) là đường trung bình của tam giác \(BCM\).
Vậy \(MC = 2HF\)
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











